Inclusion of QED corrections in PDFs The NNPDF4.0QED PDF set

Niccolò Laurenti 1 , on behalf of the NNPDF collaboration

¹University of Milan and INFN, sezione di Milano

10th July 2023, Montpellier

Introduction

Impact on phenomenology

What are PDFs?

• In high energy physics, cross sections are computed via

- The parton distribution functions (PDFs) link the two blocks.
- Comparing theoretical predictions with experimental data we can extract $f_i(Q^2)$ for a given Q^2 .

DGLAP evolution equation

 \bullet DGLAP gives the Q^2 dependence of the PDFs:

$$\mu^{2} \frac{d}{d\mu^{2}} f_{i}(x,\mu^{2}) = \sum_{j=q,\bar{q},g} \int_{x}^{1} \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_{s}(\mu^{2})\right) f_{j}(z,\mu^{2}) \quad i = q,\bar{q},g$$

$$P_{ij} = \alpha_{s} P_{ij}^{(0)} + \alpha_{s}^{2} P_{ij}^{(1)} + \alpha_{s}^{3} P_{ij}^{(2)} + \dots \quad \leftarrow \quad \text{Splitting functions}$$

$$\underbrace{\text{NNLO}}_{\text{NNLO}}$$

Solution: $f_i(x, Q_0^2) \xrightarrow{\text{DGLAP}} f_i(x, Q^2) = E_{ij}(Q^2 \leftarrow Q_0^2) \otimes f_j(x, Q_0^2)$ • We can evolve f_i to all scales Q^2 .

Impact on phenomenology

QED fit: Motivation

- $\mathcal{O}(\alpha_{\rm em}) \sim \mathcal{O}(\alpha_s^2) \sim \mathcal{O}(0.01) \implies$ percent correction
- At the moment no photon-induced (PI) contributions in theory predictions
- For example: $t\bar{t}$ PI starts at $\mathcal{O}(\alpha_s^0)$

• We need to add QED corrections!

Adding QED	
000000	

Corrections to DGLAP

DGLAP has QED corrections

$$P_{ij}(\alpha_s) \rightarrow P_{ij}(\alpha_s, \alpha_{\rm em}) = \overbrace{P_{ij}^{\rm QCD}(\alpha_s)}^{\rm pure QCD} + \overbrace{P_{ij}^{\rm QCD}(\alpha_s)}^{\rm pure QCD} + \overbrace{P_{ij}^{\rm QCD}\otimes QCD}^{\rm pure QCD}(\alpha_s, \alpha_{\rm em})$$

$$P_{ij}^{\rm QCD\otimes QED}(\alpha_s, \alpha_{\rm em}) = \alpha_{\rm em} P_{ij}^{(0,1)} + \alpha_s \alpha_{\rm em} P_{ij}^{(1,1)} + \alpha_{\rm em}^2 P_{ij}^{(0,2)}$$

- gluon couples in the same way to all quarks
- ullet photon distinguishes up-like and down-like \implies more diffucult to diagonalize

Small correction to QCD PDFs evolution

QED fit: Photon PDF

- \bullet We get a photon PDF $\gamma(x,Q^2)$
- It can be **computed**: LuxQED approach [Manohar, Nason, Salam, Zanderighi, 2016]

$$\begin{aligned} x\gamma(x,\mu^2) &= \frac{1}{2\pi\alpha_{\rm em}(\mu^2)} \int_x^1 \left\{ \frac{dz}{z} \int_{\frac{m_p^2 x^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha_{\rm em}^2(Q^2) \left[-z^2 F_L(x/z,Q^2) \right. \\ &+ \left(zP_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z,Q^2) \left] - \alpha_{\rm em}^2(\mu^2) z^2 F_2(x/z,\mu^2) \right\} + \mathcal{O}(\alpha_s \, \alpha_{\rm em}, \alpha_{\rm em}^2) \end{aligned}$$

- $F_{2,L}$ are computed from QCD PDFs: $F_{2,L} = f \otimes C_{2,L}$
- $\gamma(x)$ modifies sum rules: $\int_0^1 dx \, x \, \left(\sum_{q,\bar{q}} q(x,Q^2) + g(x,Q^2) + \gamma(x,Q^2) \right) = 1$

Adding QED	
0000000	

QED fit: Comparison with other PDF sets

 γ is compatible with the other QED PDF sets

Adding QED

Impact on phenomenology 0000

QED fit: Comparison with NNPDF4.0

10/17

Adding QED	
000000	

QED fit: Iteration

• γ depends on QCD PDFs but it changes them \implies we have to iterate

Introduction

Impact on phenomenology

	Impact on phenomenology	
	0000	

Phenomenology: inclusive Drell-Yan production

 $\sqrt{s} = 14 \text{ TeV}, M_{\ell \bar{\ell}}$ invariant mass of $\ell \bar{\ell}$ In the high $M_{\ell \bar{\ell}}$ region QED corrections are not negligible! $\mathcal{O}(5\%)$

	Impact on phenomenology	
	0000	

Phenomenology: weak bosons pair production

5% correction

2-3% correction

Few words on a new pipeline

- NNPDF4.0: based on APFEL, APFELgrid and APPLgrid
- NNPDF4.0QED: based on new tools EKO, YADISM and PineAPPL

• It will be possible to include photon induced contribution in the theory predictions!

Introduction

Impact on phenomenology

- It is possible to include QED corrections to PDF fits.
- The photon PDF is compatible with the most recent QED PDF sets.
- The quark and gluon PDFs are almost unchanged.
- There are processes in which QED gives a non negligible contribution.

Thanks for your attention!

Backup slides

Unified evolution basis

 $\Sigma_u = \sum_{k=1}^{n_u} u_k^+$, $\Sigma_d = \sum_{k=1}^{n_d} d_k^+$, $V_u = \sum_{k=1}^{n_u} u_k^-$, $V_d = \sum_{k=1}^{n_d} d_k^-$

DGLAP equations

- Singlet sector

- Valence sector

$$\mu^{2} \frac{d}{d\mu^{2}} \begin{pmatrix} V \\ V_{\Delta} \end{pmatrix} = - \begin{pmatrix} \gamma_{\mathrm{ns},V} + \langle \tilde{\gamma}_{q}^{\mathrm{ns},-} \rangle & \nu_{u} \tilde{\gamma}_{\Delta q}^{\mathrm{ns},-} \\ \nu_{d} \tilde{\gamma}_{\Delta q}^{\mathrm{ns},-} & \gamma_{\mathrm{ns}-} + \{ \tilde{\gamma}_{q}^{\mathrm{ns},-} \} \end{pmatrix} \otimes \begin{pmatrix} V \\ V_{\Delta} \end{pmatrix}$$

- Decoupled sector:

$$\mu^2 \frac{d}{d\mu^2} T_{3/8}^{u/d} = -(\gamma_{\rm ns,+} + \tilde{\gamma}_{u/d}^{\rm ns,+}) T_{3/8}^{u/d} ,$$

$$\mu^2 \frac{d}{d\mu^2} V_{3/8}^{u/d} = -(\gamma_{\rm ns,-} + \tilde{\gamma}_{u/d}^{\rm ns,-}) V_{3/8}^{u/d} .$$

Backup slides 0000

Phenomenology: $t\bar{t}$

