The inclusion of QED corrections in the NNPDF4.0 fitting framework

Niccolò Laurenti, on behalf of the **NNPDF** collaboration Based on [2401.08749]

IRN Terascale @ LNF, Frascati, 16/04/2024

Istituto Nazionale di Fisica Nucleare

Outline

PDFs fitting

How to add QED effects

 \blacksquare

Results

PDFs fitting

PDFs fitting

How to add QED effects

a n **Impact on phenomenology**

Results

• How do we compute observables in HEP?

• What are the PDFs?

Deep inelastic scattering (DIS)

$$
\sigma = \sum_{i} \hat{\sigma}_i \otimes f_i + \mathcal{O}(\Lambda^2/Q^2)
$$

- How are the PDFs fitted?
- We have to define a **theory**
- We have to choose a **dataset**
- We have to choose a fitting **methodology**

How to add QED effects

How to add QED effects

Results

Summary and Outlook

Impact on phenomenology

- Why do we want to add QED effects in PDFs?
- Are there cases in which they are not negligible? The contract of the set of the set of the set of the canonical contract of the set of the se

 $\alpha \sim \mathcal{O}(\alpha_s^2)$ S_S^2) ~ $O(1\%)$ percent correction emit photons $(-z)p$ (1) we get a photon PDF For some processes we can't neglect photon induced contributions

starts at $\mathcal{O}(\alpha_s^0)$

• How is the photon PDF determined?

+ $2x^2m_p^2$ $\left[\frac{p}{Q^2} \right] F_2(x/z, Q^2) - z^2 F_L(x/z, Q^2) \left[-\alpha^2(\mu^2) z^2 F_2(x/z, \mu^2) \right]$

• LuxQED gives a constraint between the photon PDF and the QCD PDFs

 $F_{2,L} = \sum_{i} C_{2,L,i} \otimes f_i$ *i*

∫ 1 0 $dx x (\Sigma(x, Q^2) + g(x, Q^2) + \gamma(x, Q^2)) = 1$

LuxQED approach

 $x\gamma(x,\mu^2) =$ 1 2*πα*(*μ*2) 1 ∫ *x dz z* {∫ *μ*2 $1-z$ *m*2 *px*2 $1-z$ dQ^2 \mathcal{Q}^2 $\alpha^2(Q^2)$ $\Biggl(zP_{\gamma q}(z) \Biggr)$

It modifies the sum rules

- How are DGLAP equations in presence of QED corrections?
- The photon PDF mixes with the other PDFs through evolution

$$
\mu^{2} \frac{d}{d\mu^{2}} f_{i}(x, \mu^{2}) = \sum_{j=q,\bar{q},g,y} \int_{x}^{1} \frac{dz}{z} P_{ij} \left(\frac{x}{z}, \alpha_{s}(\mu^{2}), \alpha(\mu^{2}) \right) f_{j}(z, \mu^{2})
$$
\n
$$
i = q, \bar{q}, g, \gamma
$$
\n
$$
P_{ij}(\alpha_{s}, \alpha) = P_{ij}^{QCD}(\alpha_{s}) + \tilde{P}_{ij}(\alpha_{s}, \alpha)
$$
\n
$$
pure \ QCD terms
$$
\n
$$
P_{ij}^{QCD}(\alpha_{s}) = \underbrace{\rho_{ij}^{QCD}(\alpha_{s})}_{\alpha_{s}P_{ij}^{(0)} + \alpha_{s}^{2}P_{ij}^{(1)} + \alpha_{s}^{3}P_{ij}^{(2)} + \dots}
$$
\n
$$
\underbrace{\rho_{ij}^{QCD}(\alpha_{s})}_{\alpha_{j}P_{ij}^{(0,1)} + \alpha_{s}^{2}P_{ij}^{(1,1)} + \alpha^{2}P_{ij}^{(0,2)} + \dots}
$$

The QED case is more difficult to solve than the pure QCD one (backup)

• What is the fitting methodology?

• LuxQED formula gives a constraint between $γ$ and the other PDFs: **such constraint is implemented iteratively**

Computed at 100 GeV and evolved back to fitting scale with DGLAP [\[Manohar, Nason, Salam,](https://arxiv.org/pdf/1708.01256.pdf) [Zanderighi, 2017\]](https://arxiv.org/pdf/1708.01256.pdf)

(backup)

Results

PDFs fitting

How to add QED effects

 \blacksquare

Results

• Results at fitting scale

• Very small differences in the quarks and gluon

13

- Results at 100 GeV
- Difference grows due to the effect of the photon in the evolution

14

- Photon PDF:
- Difference with NNPDF3.1QED is less than percent
- Percent difference with the other photon PDFs from the latest QED fits

Impact on phenomenology

How to add QED effects

Results

16

- There are regions in which QED effects are not negligible
- Difference is at the level of few percent
- Photon in subtracting momentum from the other PDFs

17

- There are regions in which QED effects are not negligible
- Difference is at the level of few percent
- Photon in subtracting momentum from the other PDFs

Summary and Outlook

How to add QED effects

Results

Summary and Outlook

¹⁹ **Thank you for your attention!**

We can add QED corrections to PDF fitting, getting a photon PDF

The photon PDF is compatible with the most recent QED fits

There are processes in which photon initiated contributions are not negligible

Quarks and gluon are almost unchanged (the photon PDF is small)

Backup slides

How to add QED effects

Impact on phenomenologyJT.

Results

• Theory

• What defines the theory of a fit?

p.o.= perturbative order

• Dataset

• Which data points are included in the fit?

4618 data points from different processes

• Methodology

• How are the PDFs extracted?

Solving DGLAP

Pure QCD case
\n
$$
\mu^2 \frac{d}{d\mu^2} \left(\frac{g}{\Sigma}\right) = \left(\frac{P_{gg} P_{gq}}{P_{qg} P_{qq}}\right) \otimes \left(\frac{g}{\Sigma}\right)
$$
\n
$$
\mu^2 \frac{d}{d\mu^2} V = P_{ns,v} \otimes V
$$
\n
$$
\mu^2 \frac{d}{d\mu^2} f_{ns,\pm} = P_{ns,\pm} \otimes f_{ns,\pm}
$$
\n
$$
\Sigma = \sum_{i=1}^{n_f} q_i^+ \quad V = \sum_{i=1}^{n_f} q_i^-
$$
\n
$$
q^{\pm} = q \pm \bar{q}
$$
\n
$$
\mu^{\pm} + d^{\pm} + s^{\pm} - 3c^{\pm}
$$
\n
$$
q^{\pm} = q \pm \bar{q}
$$
\n
$$
\mu^{\pm} + d^{\pm} + s^{\pm} + c^{\pm} - 4b^{\pm}
$$

Pure QCD case
\n
$$
\begin{aligned}\n\mathcal{E} \\
\mathcal{E} \\
$$

Solving DGLAP

 $P_{s} =$ $P_{gg} + \tilde{P}_{gg}$ *F*_{gy} *P_{gq}* + $\langle \tilde{P}$ *P*˜ *^γ^g P*˜ *γγ* ⟨*P*˜ $2n_f(P_{qg} + \langle \tilde{P}_{qg} \rangle)$ $2n_f \langle \tilde{P}_{qy} \rangle$ $P_{qq} + \langle \tilde{P}_{q}^{\text{ns},+} \rangle$ $2n_f \nu_d \tilde{P}_{\Delta qg}$ $2n_f \nu_d \tilde{P}_{\Delta q\gamma}$ $\nu_d \tilde{P}_{\Delta q}^{\text{ns},+} + \nu_d e_{\Delta q}^2$

 $P_v = ($ $P_{\text{ns},V} + \langle P \rangle$ $\left\{\begin{array}{c} \tilde{\rho} \text{ns},-\rho \\ q \end{array}\right\} \qquad \nu_u \tilde{P}^{\text{ns},-}_{\Delta q}$ *νdP* $\left(\frac{\tilde{p}_{\text{ns},-}}{\Delta q} \right)$ $P_{\text{ns}-} + \left\{ \tilde{P}_{q}^{\text{ns},-} \right\}$

$$
\nu_{u} \tilde{P}_{g\Delta q}
$$
\n
$$
\langle \tilde{P}_{qq} \rangle
$$
\n
$$
\nu_{u} \tilde{P}_{g\Delta q}
$$
\n
$$
\langle \tilde{P}_{qq} \rangle
$$
\n
$$
\nu_{u} \tilde{P}_{\gamma \Delta q}
$$
\n
$$
\nu_{u} \tilde{P}_{\gamma \Delta q}
$$
\n
$$
+ \nu_{d} e_{\Delta q}^{2} \langle e_{q}^{2} \rangle \tilde{P}_{\text{ps}}
$$
\n
$$
+ \nu_{d} e_{\Delta q}^{2} \langle e_{q}^{2} \rangle \tilde{P}_{\text{ps}}
$$
\n
$$
P_{\text{ns},+} + \{\tilde{P}_{q}^{\text{ns},+}\} + \nu_{u} \nu_{d} (e_{\Delta q}^{2})^{2} \tilde{P}_{\text{ps}}
$$
\n
$$
\nu_{u/d} = \frac{n_{u/d}}{n_{f}}, \quad \langle \tilde{P}_{q}^{\text{ns},\pm} \rangle = \nu_{u} \tilde{P}_{u}^{\text{ns},\pm} + \nu_{d} \tilde{P}_{d}^{\text{ns},\pm},
$$
\n
$$
\{\tilde{P}_{q}^{\text{ns},\pm} \} = \nu_{d} \tilde{P}_{u}^{\text{ns},\pm} + \nu_{u} \tilde{P}_{d}^{\text{ns},\pm}, \quad \tilde{P}_{\Delta q}^{\text{ns},\pm} = \tilde{P}_{u}^{\text{ns},\pm} - \tilde{P}_{d}^{\text{ns},\pm}
$$

 \leftarrow

Solution of the non-diagonal sectors

$$
\mathbf{E}_{S}(\mu^{2} \leftarrow \mu_{0}^{2}) = \mathcal{P} \exp \left(-\int_{\log \mu_{0}^{2}}^{\log \mu^{2}} \gamma_{S}(\alpha_{s}(\mu^{2}), \alpha(\mu^{2})) d \log \mu^{2}\right) \simeq \prod_{k=0}^{n-1} \mathbf{E}_{S}(\mu^{2(k+1)} \leftarrow \mu^{2(k)})
$$

$$
\mathbf{E}_{S}(\mu^{2(k+1)} \leftarrow \mu^{2(k)}) = \exp\left(-\gamma_{S}(\alpha_{S}(\mu^{2(k+1/2)}), \alpha(\mu^{2(k+1/2)}))\Delta \log \mu^{2(k)}\right)
$$

Solved in Mellin space

$$
-\mu^{2(n)}=\mu^2
$$

$$
\Delta \log \mu^{2(k)} = \log \mu^{2(k+1)} - \log \mu^{2(k)}
$$

$$
\log \mu^{2(k+1/2)} = \frac{\log \mu^{2(k+1)} + \log \mu^{2(k)}}{2}
$$

$$
\gamma(N) = -\int_0^1 dz \, z^{N-1} P(z)
$$

Computation of the photon

Why the LuxQED formula is used at 100 GeV?

LuxQED neglects higher twist corrections Λ $\widehat{\mathcal{O}}$ $\overline{\mathcal{L}}$ *μ*)

For low μ , the integral is dominated by low \mathcal{Q}^2 structure functions **non-perturbative!**