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«Polish-born, French-educated Madame Curie, co-discover of radioactivity, she was a hero of science
until her hair fell out, her vomit and stool became filled with blood, and she was poisoned to death by her

own discovery. With a little hard work, I see no reason why that can’t also happen to any of you.»

- Sheldon Lee Cooper
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Exercise 1

Consider a system of N coupled harmonic oscillators with potential

V =

N∑
i=1

κ

2
(qi+1 − qi)

2 . (1)

Determine the normal coordinates and the eigenvectors of the potential, with boundary conditions
q0(t) = qN+1(t) = 0. Determine directly the equations of motion and the normal coordinates in the
continuum limit without using the Lagrangian, by taking the continuum limit of the result obtained
in the discrete case.

Solution:

The first request of Exercise 1 is to find the normal coordinates and the eigenvectors of the potential of
Eq. (1). Since the solution is rather cumbersome, we refer the reader to Sec. 2.3 of the textbook by David
Morin at the link https://scholar.harvard.edu/david-morin/waves, where an exhaustive discussion
on this topic was dedicated.

Let’s see how to solve the second part of the exercise. Since the kinetic energy of a system of N
coupled harmonic oscillators corresponds to

T =

N∑
i=1

m

2
q̇2i , (2)

the Lagrangian reads

L =

N∑
i=1

[m
2
q̇2i −

κ

2
(q2i+1 − q2i )

]
. (3)

We use it to compute the Euler–Lagrange equation

d

dt

∂L

∂q̇k
− ∂L

∂qk
= 0 , (4)

as

d

dt

∂L

∂q̇k
=

N∑
i=1

m

2

d

dt

∂q̇2i
∂q̇k

= mq̈k ,

− ∂L

∂qk
=

N∑
i=1

κ

2

∂

∂qk
(q2i+1 − q2i ) =

N∑
i=1

κ(q2i+1 − q2i )(δi+1,k − δik)

=κ(qk − qk−1)− κ(qk+1 − qk) ,

(5)

from which we get straightforwardly the discrete equations of motion

q̈k =
κ

m
(qk+1 − qk)−

κ

m
(qk − qk−1) . (6)

In order to move to the continuum limit, we start by promoting qk to be a continuous parameter q(x),
where x is the position of the kth node along the real axis. Then we define ∆x as the elongation of the
spring between the point qk and that qk+1, i.e.

qk 7→ q(t, x) ,

qk+1 7→ q(t, x+∆x) ,

qk−1 7→ q(t, x−∆x) ,

(7)
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according to which Eq. (6) becomes1

∂2t q(t, x) =
κ

m

[
q(t, x+∆x)− q(t, x)

]
− κ

m

[
q(t, x)− q(t, x−∆x)

]
. (8)

Assuming q(t, x) smooth enough to have a well defined second derivative in x, we can expand the r.h.s. of
Eq. (8) in series of ∆x≪ 1 and get

∂2t q(t, x)|∆x≪1 =
κ

m

[
q(t, x) + ∆x∂xq(t, x) +

1

2
(∆x)2∂2xq(t, x)− q(t, x) +O(∆x)3

]
− κ

m

[
q(t, x)− q(t, x)−∆x∂xq(t, x) +

1

2
(∆x)2∂2xq(t, x)− q(t, x) +O(∆x)3

]
=

κ

m
(∆x)2∂2xq(t, x) +O(∆x)3 .

(9)

Finally, by defining ωc as

ω2
c ≡ κ∆x

m/∆x
=

κc
δm

(10)

we find that Eq. (6) can be rewritten in the continuum limit as(
∂2t − ω2

c∂
2
x

)
q(t, x) = 0 . (11)

This proves that q(t, x) must satisfy the wave equation.
It remains only to understand whether ωc of Eq. (10) is well defined when ∆x → 0. In this regard,

we point out that:

• δm = m/∆x is the mass density of the new continuum system, which is clearly finite;

• if one cuts a spring in half, it doubles its stiffness. If we then cut the spring into many pieces,
each of length ∆x, we expect the stiffness to become proportional to κ ∝ 1/∆x, which diverges for
∆x→ 0. It follows that κc = κ∆x must be finite in this limit.

Therefore we conclude stating that ωc is finite and and well-defined in the limit ∆x→ 0.
□

1We use the handy notation ∂t ≡ ∂/∂t and ∂x ≡ ∂/∂x.
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Exercise 2

Consider the Lagrangian density
L = ∂µϕ

∗∂µϕ−m2|ϕ|2 , (12)

where ϕ(x) is a complex classical field. Derive the classical equations of motion and solve them using
the method of normal coordinates.

Solution:

In order to derive the classical equations of motion, we need to apply the Euler-Lagrange equations to
both ϕ and ϕ∗, i.e.

∂µ
∂L

∂(∂µϕ)
− ∂L
∂ϕ

= 0 ,

∂µ
∂L

∂(∂µϕ∗)
− ∂L
∂ϕ∗

= 0 ,

(13)

which, after computing the derivatives, yield

∂µ∂
µϕ∗ +m2ϕ∗ = (□+m2)ϕ∗ = 0 ,

∂µ∂
µϕ+m2ϕ = (□+m2)ϕ = 0 .

(14)

Thus, we find that ϕ (and, of course, ϕ∗ as well) satisfies the so-called Klein–Gordon equation (KG).
Now, let’s discuss how we can solve it. We write ϕ(x) = ϕ(t,x) in the Fourier space of x, i.e.,

ϕ(t,x) =

∫
d3p

(2π)3
eip·xϕ(t,p) . (15)

The KG equation becomes (recall that ∂µ∂µ = ∂2t −∇2)

(∂µ∂
µ +m2)ϕ(t,x) =

∫
d3p

(2π)3
eip·x(∂2t + p2 +m2)ϕ(t,p) = 0 , (16)

which implies
∂2t ϕ(t,p) = −E2

p ϕ(t,p) , Ep ≡
√

p2 +m2 . (17)

Notice that Ep is the relativistic energy of the field ϕ. The general solution of Eq. (17) reads

ϕ(t,p) = A(p) e−iEpt +B(p) eiEpt , (18)

where A(p) and B(p) are two distinct time-independent complex functions. Substituting this result into
Eq. (15), we obtain

ϕ(t,x) =

∫
d3p

(2π)3
(
A(p) e−iEpt+ip·x +B(p) eiEpt+ip·x)

=

∫
d3p

(2π)3
(
A(p) e−iEpt+ip·x +B(−p) eiEpt−ip·x

)
,

(19)

where in the second line we replaced the variable of integration as p 7→ −p. At this point, we redefine
the functions A(p) and B(p) as follows:

A(p) ≡ ap√
2Ep

, B(−p) ≡
b∗p√
2Ep

, (20)

where the prefactor 1/
√
2Ep will turn out to be a very useful choice of normalization in quantizing fields.

We point out that there is no specific reason to write b∗p instead of bp at this stage. However, in the
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quantization of the fields, we will see that ap and bp will be promoted to operators acting on Hilbert
spaces, specifically bp 7→ b̂p and b∗p 7→ b̂†p. So, we choose b∗p to represent a classical solution in a form
ready for quantization. Finally, we introduce the four-momentum pµ defined as

pµ ≡ (Ep,p) , (21)

such that the time component reads p0 = Ep. This is equivalent to requiring pµ to satisfy the equation
p2 = (p0)2 − p2 = m2. Therefore, the general solution of the KG equation from Eq. (14) corresponds to

ϕ(x) =

∫
d3p

(2π)3
√
2Ep

(ap e
−ipx + b∗p e

ipx)

∣∣∣∣
p0=Ep

. (22)

Before concluding, we observe that a complex scalar field ϕ possesses two degrees of freedom and can
be expressed as a combination of two real scalar fields, ϕ1 and ϕ2:

ϕ(x) =
ϕ1(x) + iϕ2(x)√

2
, ϕ∗(x) =

ϕ1(x)− iϕ2(x)√
2

. (23)

One can freely rewrite the Lagrangian density L(x) in terms of ϕ1,2 as:

L(x) = 1

2
∂µϕ1∂

µϕ1 +
1

2
∂µϕ2∂

µϕ2 −
m2

2

(
ϕ21 + ϕ22

)
, (24)

and then derive the equations of motion for ϕ1,2. This task is left as an exercise for the reader.
□
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Exercise 3

(...)

Solution:

(...)
□
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Exercise 4

Show that requiring invariance of the metric upon Lorentz transformations

Λµ
νΛ

ρ
ση

νσ = ηµρ , (25)

and writing the infinitesimal transformation in terms of its generators Jρσ

Λµ
ν = ηµν − i

2
ωρσ(Jρσ)

µ
ν , (26)

completely fixes the explicit form of the generators, viewed as 4 × 4 Lorenz matrices (Jρσ)
µ
ν , and

determine their explicit expression.

Solution:

Let Λ and ω be an element of the Lorentz group and of the Lorentz algebra respectively. The Eq. (26)
states that

Λµ
ν = ηµν + ωµ

ν +O(ω2) . (27)

Substituting this identity in Eq. (25) we obtain[
ηµν + ωµ

ν +O(ω2)
][
ηρσ + ωρ

σ +O(ω2)
]
ηνσ

= ηµρ + ωµ
νη

ρ
ση

νσ + ωρ
ση

µ
νη

νσ +O(ω2)

= ηµρ + ωµρ + ωρµ +O(ω2)

= ηµρ ,

(28)

from which we find
ωµρ = −ωρµ . (29)

Therefore, a generic element of the Lorentz algebra in the vector representation (4×4 matrices) with both
high (or low) indices must be totally antisymmetric. This implies that the Lorentz algebra necessarily
has 6 generators, i.e.

ωµν =


0 α β γ
−α 0 δ ϵ
−β −δ 0 θ
−γ −ϵ −θ 0

 , (30)

or, written in a more useful way as far as it concerns,

ωµ
ν = ηµσωσν =


0 α β γ
α 0 −δ −ϵ
β δ 0 −θ
γ ϵ θ 0

 . (31)

Basically ωµ
ν is

• symmetric in (0i) and (i0) indices, i.e.
ω0

i = ωi
0 , (32)

• antisymmetric in the spatial entries
ωi

j = −ωj
i . (33)

This completely fixes the Lorentz algebra. One can show that ω0
i correspond to the Lorentz boosts Ki,

while the antisymmetric part ωi
j to rotations J i

j .
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Let’s now see how generators Jρσ appears in the theory. Since ωρσ is antisymmetric, we can derive
the following identity

ωµ
ν = ηµρδσνωρσ =

1

2
ηµρδσν (ωρσ − ωσρ) =

1

2
ωρσ(η

µρδσν − ηµσδρν ) . (34)

We are thus free to introduce an antisymmetric tensor Jρσ, defined as

(Jρσ)µν ≡ i(ηµρδσν − ηµσδρν ) , (35)

such that
ωµ

ν = − i

2
ωρσ(J

ρσ)µν . (36)

The definition of these “new” generators Jρσ completely determines the Lorentz algebra.
□
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Exercise 5

Derive the Lorentz algebra, i.e. the commutation relations

[Jµν , Jρσ] = i (ηµσJνρ + ηνρJµσ − ηµρJνσ − ηνσJµρ) (37)

a) using the explicit form of the generators found in Exercise 4,

b) from the relation D(Λ)−1D(Λ′)D(Λ) = D(Λ−1Λ′Λ), which holds for any Lorentz representa-
tion D(Λ) in the case of infinitesimal transformation (see Problem 1.11-b of V. Radovanović’s
book Problem Book Quantum Field Theory).

Solution:

a) We proceed inserting the explicit expression of Jµν (see Eq. (35) in Problem 4) inside Eq. (37).
After some algebraic manipulations, we obtain

[Jµν , Jρσ]αβ = (ηµαδνγ − ηναδµγ )(η
ργδσβ − ησγδρβ )− (ηραδσγ − ησαδργ )(η

µγδνβ − ηνγδµβ )

= −
[
gµαgρνδσβ − gµαgσνδρβ − gναgρµδσβ + gναgσµδρβ

− ηραgµσδνβ + ηραησνδµβ + ησαηρµδνβ − ησαηνρδµβ

]
= − i

[
(−i)ηµσ

(
ηναδρβ − ηραδνβ

)
+ (−i)ηνρ

(
ηµαδσβ − ησαδµβ

)
− (−i)ηµρ

(
ηναδσβ − ησαδνβ

)
− (−i)ηνσ

(
ηµαδρβ − ηραδµβ

)]
= i
(
ηµσJνρ + ηνρJµσ − ηµρJνσ − ηνσJµρ

)α
β
, (38)

which proves Eq. (37).

b) Let Λ′ be an infinitesimal Lorentz transformations Λ′ = 1+ω′ (ω′ is a term of the Lorentz algebra)
and let D(Λ) be the representation of any infinitesimal Lorentz transformation Λ, i.e.

D(Λ) = 1 − i

2
ωµνJ

µν . (39)

Consider Λ′′ = Λ−1Λ′Λ. Using the expansion of Λ′, we find

Λ′′ = Λ−1Λ′Λ = 1 + Λ−1ω′Λ . (40)

Notice that Λ−1ω′Λ is the infinitesimal expansion of Λ′′, therefore using Eq. (39) we get

D(Λ′′) = 1 + Λ−1ω′Λ = 1 − i

2
(Λ−1ω′Λ)µνJ

µν = 1 − i

2
Jµν(Λ−1) ρ

µ Λσ
νω
′
ρσ . (41)

On the other hand, the identityD(Λ′′) = D(Λ−1Λ′Λ) = D(Λ)−1D(Λ′)D(Λ) holds, and the r.h.s. cor-
responds to

D(Λ)−1D(Λ′)D(Λ) = D−1(Λ)

(
1 − i

2
ω′ρσJ

ρσ

)
D(Λ) ≡ 1 − i

2
D−1(Λ)JρσD(Λ)ω′ρσ . (42)

So, comparing the above r.h.s. with that of Eq. (41), we find2

D−1(Λ)JρσD(Λ) = (Λ−1) ρ
µ (Λ−1) σ

ν Jµν , (43)

2Here we use Eq. (25) to write Λσ
ν = (Λ−1) σ

ν .
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that is the transformation law of a second rank tensor. Replacing the expression of D(Λ) on the
l.h.s. and (Λ−1)µν = δµν − ωµ

ν on the r.h.s., we obtain(
1 +

i

2
ωµνJ

µν

)
Jρσ

(
1 − i

2
ωαβJ

αβ

)
=
(
δ ρ
µ − ω ρ

µ

)
(δ σ

ν − ω σ
ν ) Jµν , (44)

which implies

Jρσ +
i

2
ωµν [J

µν , Jρσ] = Jρσ − ω ρ
µ Jµσ − ω σ

ν Jρν . (45)

We thus conclude that3

i

2
ωµν [J

µν , Jρσ] =− ω ρ
µ Jµσ − ω σ

ν Jρν

=− ωµνη
νρJµσ − ωνµη

µσJρν

=− 1

2

(
ωµνη

νρJµσ + ωνµη
µρJνσ

)
− 1

2

(
ωνµη

µσJρν + ωµνη
νσJρµ

)
=− 1

2
ωµν (η

µσJνρ + ηνρJµσ − ηµρJνσ − ηνσJµρ) ,

(46)

i.e.
[Jµν , Jρσ] = i (ηµσJνρ + ηνρJµσ − ηµρJνσ − ηνσJµρ) . (47)

We have got Eq. (37).

□

3In what follows we use the asymmetry of both ωµν and Jµν .
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Exercise 6

(...)

Solution:

(...)
□
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Exercise 7

Show that the lagrangian density

L =
1

2
(∂µϕ1∂

µϕ1 + ∂µϕ2∂
µϕ2)−

m2

2

(
ϕ21 + ϕ22

)
− λ

(
ϕ21 + ϕ22

)2 (48)

is invariant under (
ϕ′1
ϕ′2

)
= R(θ)

(
ϕ1
ϕ2

)
, (49)

where R(θ) is a rotation of an angle θ. Determine the Noether current and charge.

Solution:

Consider the inverse of Eq. (49),4(
ϕ1
ϕ2

)
= R−1(θ)

(
ϕ′1
ϕ′2

)
=⇒ ϕi = R−1(θ)ijϕ

′
j . (50)

Since R(θ) is a rotation matrix, it must be orthogonal, i.e.

RT (θ)R(θ) = 1 , =⇒ RT (θ) = R−1(θ) , (51)

so we find
ϕi = RT (θ)ijϕ

′
j ≡ ϕ′jR(θ)ji . (52)

According to this writing, we obtain

∂µϕi∂
µϕi = ∂µϕ

′
jRji(θ)∂

µϕ′kRki(θ) = ∂µϕ
′
j∂

µϕ′kRji(θ)Rki(θ) = ∂µϕ
′
j∂

µϕ′k , (53)

where in the last step we used the Eq. (51) to write

R(θ)jiR(θ)ki = R(θ)jiR
T (θ)ik = δik . (54)

The same applies to the potential of L:

ϕiϕi = ϕ′jR(θ)jiϕ
′
kR(θ)ki = ϕ′jϕ

′
kR(θ)jiR

T (θ)ik = ϕ′jϕ
′
j . (55)

In conclusion, we have shown that the transformation in Eq. (49) is a symmetry of the Lagrangian in
Eq. (48).

In order to determine the Noether current and the Noether charge, we have to expand the rotation
matrix to first order in the parameter θ as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
=

(
1 0
0 1

)
+ θ

(
0 −1
1 0

)
+O

(
θ2
)
. (56)

It follows that {
ϕ′1 = ϕ1 − θϕ2 ,

ϕ′2 = ϕ2 + θϕ1 ,
=⇒

{
δϕ1 = ϕ′1 − ϕ1 = −θϕ2 ,
δϕ2 = ϕ′2 − ϕ2 = +θϕ1 .

(57)

Therefore, from the definition of the Noether current we find

jµ =
∂L

∂ (∂µϕi)
δϕi = ∂µϕ1 δϕ1 + ∂µϕ2 δϕ2 = ϕ1 ∂

µϕ2 − ϕ2 ∂
µϕ1 , (58)

while the Noether charge corresponds to

Q =

∫
d3x j0(t,x) =

∫
d3x

[
ϕ1(t,x)ϕ̇2(t,x)− ϕ2(t,x)ϕ̇1(t,x)

]
. (59)

□
4Also the repeated Latin indices are to be intended summed.
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Exercise 8

(...)

Solution:

(...)
□
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Exercise 9

(...)

Solution:

(...)
□
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Exercise 10

(...)

Solution:

(...)
□
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Exercise 11

Show that the momentum operator for a scalar quantum field, namely

P = −
∫

d3x ϕ̇(t,x)∇ϕ(t,x) , (60)

generates translations of the field operator, i.e.

[P , ϕ(t,x)] = i∇ϕ(t,x) . (61)

Solution:

Let the momentum operator P be defined as in Eq. (60). Then the commutator [P , ϕ(t,x)] reads

[P , ϕ(t,x)] =−
∫

d3x′
[
ϕ̇(t,x′)[∇′ϕ(t,x′), ϕ(t,x)] +

−iδ(3)(x−x′)︷ ︸︸ ︷
[ϕ̇(t,x′), ϕ(t,x)]∇ϕ(t,x′)

]
= i∇ϕ(t,x)−

∫
d3x′ϕ̇(t,x′)[∇′ϕ(t,x′), ϕ(t,x)] .

(62)

We thus need to compute [∇′ϕ(t,x′), ϕ(t,x)]. Remember that the real scalar quantum field is

ϕ(t,x) =

∫
d3p

(2π)3
1√
2Ep

[
âpe
−ipx + â†pe

ipx
]
, (63)

so its gradient corresponds to

∇ϕ(t,x) =

∫
d3p

(2π)3
ip√
2Ep

[
âpe
−ipx − â†pe

ipx
]
. (64)

We use it to prove that [∇′ϕ(t,x′), ϕ(t,x)] = 0. We start from

[∇′ϕ(t,x′), ϕ(t,x)] =
∫

d3p′

(2π)3
ip′√
2Ep′

[
âp′e−ip

′x − â†p′e
ip′x, ϕ(t,x)

]
=

∫
d3p′

(2π)3
d3p

(2π)3
ip′√

4Ep′Ep

[
âp′e−ip

′x − â†p′e
ip′x, âpe

−ipx + â†pe
ipx
]
,

(65)

where

[
âp′e−ip

′x − â†p′e
ip′x, âpe

−ipx + â†pe
ipx
]
=

δpp′ (2π)3︷ ︸︸ ︷
[âp′ , â†p] e

i(px−p′x′) −

−δpp′ (2π)3︷ ︸︸ ︷
[â†p′ , âp] e

−i(px−p′x′)

= δpp′(2π)3
[
ei(px−p

′x′) + e−i(px−p
′x′)
]
.

(66)

Notice that the presence of δpp′ implies

i(px− p′x′) = −ip · (x− x′) , (67)

since
p′0 = Ep′ =

√
(p′)2 +m2 =

√
p2 +m2 = Ep = p0 . (68)

Therefore we conclude that

[∇′ϕ(t,x′), ϕ(t,x)] =
∫

d3p

(2π)3
ip

2Ep

[
eip·(x−x

′) + e−ip·(x−x
′)
]
= 0 , (69)

where the r.h.s. vanishes because the integrand is odd under the swap p 7→ −p. It follows that

[P , ϕ(t,x)] = i∇ϕ(t,x) . (70)

□
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Exercise 12

Derive the canonical commutation relation for the scalar field operator

[ϕ(x), π(x′)] = iδ(3)(x− x′) (71)

from the expression of the field operators ϕ and π in terms of creation and annihilation operators,
and the commutation relation satisfied by the latter.

Solution:

We want to prove the canonical commutation relation (71), with ϕ(x) ≡ ϕ(0,x) and the same for π(x).
To do so, we simply use the explicit expressions of ϕ(x) and π(x), i.e.

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

[
âpe

ip·x + â†pe
−ip·x] ,

π(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

[
âpe

ip·x − â†pe
−ip·x] , (72)

to compute

[ϕ(x), π(x′)] =− i

2

∫
d3p′

(2π)3
d3p

(2π)3

√
Ep′

Ep

[
âpe

ip·x + â†pe
−ip·x, âp′eip

′·x′
− â†p′e

−ip′·x′
]
. (73)

Since

[
âpe

ip·x + â†pe
−ip·x, âp′eip

′·x′
− â†p′e

−ip′·x′
]
= −

δpp′ (2π)3︷ ︸︸ ︷
[âp, â

†
p′ ] e

i(p·x−p′·x′) +

−δpp′ (2π)3︷ ︸︸ ︷
[â†p′ , âp] e

−i(p·x−p′·x′)

= − δpp′(2π)3
[
eip·(x−x

′) + e−ip·(x−x
′)
]
,

(74)

we get

[ϕ(x), π(x′)] =− i

2

∫
d3p′

(2π)3
d3p

(2π)3

√
Ep′

Ep
δpp′(2π)3

[
eip·(x−x

′) + e−ip·(x−x
′)
]

=
i

2

∫
d3p

(2π)3

[
eip·(x−x

′) + e−ip·(x−x
′)
]

= i

∫
d3p

(2π)3
eip·(x−x

′)

= iδ(3)(x− x′) ,

(75)

which gives exactly the result we are looking for.
□
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Exercise 13

(...)

Solution:

(...)
□

19



Exercise 14

Show that the spin operator for the electromagnetic field has the form

si = ϵijk
∫

d3xEjAk =

∫
d3p

(2π)3

∑
λ,λ′=±

[
ϵ∗j (p, λ)ϵi(p, λ

′)− ϵ∗i (p, λ)ϵj(p, λ
′)
]
â†p,λâp,λ′ . (76)

Solution:

Let Λ = Λ(θ) be a rotation of an angle θ around the ẑ axis. To prove Eq. (76), we start by computing
the conserved charge of Aµ(x). Remember that the conserved current reads

jµ =
∂L

∂(∂µAν)
∆Aν , (77)

where ∆Aν is defined according to
A′ν = Aν + θ∆Aν . (78)

The rotation Λ acts on Aµ(x) as

A′µ(x) = Λµ
νA

ν(x0) , x = Λx0 , (79)

where

Λµ
ν =


1 0 0 0
0 1 −θ 0
0 θ 1 0
0 0 0 0

 , (80)

so we can compute ∆Aµ as follows

A′µ(x) = Λµ
νA

ν(x0) =
(

1 − i

2
ωρσJ

ρσ
)µ

ν
Aν(Λ−1x) , (81)

with

ωρσ =


0 0 0 0
0 0 θ 0
0 −θ 0 0
0 0 0 0

 . (82)

According to the relation J i = 1
2ϵ

ijkJjk and using the antisymmetry of Jρσ, Eq. (81) reduces to5

A′µ(x) =
(
1 − iω12J

3
)µ

ν
Aν(Λ−1x) . (83)

Now, said xµ = (t, x, y, z) and xµ0 = (t, x0, y0, z0), to the first order in θ the spatial coordinates of x = Λx0
are given by 

x = x0 − θy0 ,

y = θx0 + y0 ,

z = z0 ,

(84)

so those of x0 = Λ−1x are obtained by changing θ in −θ, that is

Aν(Λ−1x) = Aν(t, x+ θy, y − θx, z) = Aν(x) +
∂Aν

∂x
θy − ∂Aν

∂y
θx . (85)

5Notice that J3 = 1
2
(J12 − J21) = J12.
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Plugging this expression into Eq. (83), we get (up to O(θ2))

A′µ(x)−Aµ(x) = (1 − iθJ3)µν

(
Aν(x) +

∂Aν

∂x
θy − ∂Aν

∂y
θx

)
−Aµ(x)

= −iθ(J3)µνA
ν(x) + θ(y∂x − x∂y)A

µ(x) . (86)

The first part of Eq. (86) is a variation related to the internal transformations, while the second one is
related to the space-time transformations. Since Λ is a rotation around the ẑ axis, it follows that the
spin is the generator of the internal transformations and the orbital angular momentum of the external
ones. However in this exercise we are interested in the spin, so from now on we only focus on the first
part of Eq. (86), i.e.

∆Aµ = −i(J3)µνA
ν(x) . (87)

Therefore, we plug Eq. (87) into Eq. (77), we use

∂L
∂(∂µAν)

= −Fµν (88)

and then set µ = 0 (we are interested in j0), which gives −F 0ν = Eν (with E0 = 0 because F 00 = 0).
Putting everything together, we find

j0 = Ei∆Ai = Ei(−i)(J3)ijA
j(x) , (89)

where now i, j run only on spatial components 1, 2, 3. Writing explicitly J3 as

(J3)ij = (J12)ij = i(η1iη
2
j − η2jη

1
i) , (90)

we get
j0 = E1A2 − E2A1 = ϵ3ijEiAj , (91)

which means that the conserved charge corresponds to

Q0 ≡ s3 =

∫
d3x ϵ3jkEjAk . (92)

Generalizing this procedure to a generic rotation, one can easily show that

si =

∫
d3x ϵijkEjAk . (93)

Now we only need to substitute the explicit expressions of Ej and Ak in the last equation. Remember
the definitions

A =

∫
d3p

(2π)3
1√
2ωp

∑
λ=±

[
ϵ(p, λ)âp,λe

−ipx + ϵ∗(p, λ)â†p,λe
ipx
]
, A0 = 0 , ωp = |p| , (94)

and also the relations
∇ ·A = 0 , [âp,λ, â

†
q,λ′ ] = (2π)3δ(3)(p− q)δλλ′ . (95)

Then, according to the identity Ej = F0j = ∂0Aj − ∂jA0 = ∂0Aj , we can write Ej as

Ej = ∂0Aj =
∂

∂t

∫
d3p

(2π)3
1√
2ωp

∑
λ=±

[
ϵj(p, λ)âp,λe

−ipx + ϵ∗j (p, λ)â
†
p,λe

ipx
]

= i

∫
d3p

(2π)3

√
ωp

2

∑
λ=±

[
− ϵj(p, λ)âp,λe

−ipx + ϵ∗j (p, λ)â
†
p,λe

ipx
]
.

(96)
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At this point we plug both Eqs. (94) and (96) into Eq. (93), getting

sk = ϵkji
∫

d3xi

∫
d3p

(2π)3

√
ωp

2

∑
λ=±

[
− ϵj(p, λ)âp,λe

−ipx + ϵ∗j (p, λ)â
†
p,λe

ipx
]

×
∫

d3p′

(2π)3
1√
2ωp′

∑
λ′=±

[
ϵi(p

′, λ′)âp′,λ′e−ip
′x′

+ ϵ∗i (p
′, λ′)â†p′,λ′e

ip′x′
]

= iϵijk
∫

d3p

(2π)3
1

2

∑
λ,λ′=±

[
ϵ∗j (p, λ)ϵi(p, λ

′)â†p,λâp,λ′ − ϵj(p, λ)ϵ
∗
i (p, λ

′)âp,λâ
†
p,λ′

+ ϵ∗j (p, λ)ϵ
∗
i (−p, λ′)â†p,λâ

†
−p,λ′e

2ip0t − ϵj(p, λ)ϵi(−p, λ′)âp,λâ−p,λ′e−2ip
0t
]
.

(97)

The last two terms of the last line vanish. In fact, taking for instance the first of the two, we can rewrite
it as

ϵkjiϵj(p, λ)ϵ
∗
i (−p, λ′)â†p,λâ

†
−pλ′

=
1

2
ϵkji

(
ϵ∗j (p, λ)ϵ

∗
i (−p, λ′)â†p,λâ

†
−p,λ′ − ϵ∗i (p, λ

′)ϵ∗j (−p, λ)â†p,λ′ â
†
−p,λ

)
,

(98)

which is an odd function under p 7→ −p and thus gives zero under integration.
We are then left with the first two terms of Eq. (97). Since they are both multiplied by ϵkji, it is

convenient to antisymmetrize them,

sk = iϵkji
∫

d3p

(2π)3
1

2

∑
λ,λ′=±

[ (
ϵ∗j (p, λ)ϵi(p, λ

′)− ϵ∗i (p, λ)ϵj(p, λ
′)
)
â†p,λâp,λ′

−
(
ϵj(p, λ)ϵ

∗
i (p, λ

′)− ϵi(p, λ)ϵ
∗
j (p, λ

′)
)
âp,λâ

†
p,λ′

]
.

(99)

Now it is enough to relabel the summed indices in the last term of Eq. (99) as λ 7→ λ′ and λ′ 7→ λ, and
swap the order of the operators â and â† (these operators must be taken inside normal ordering) to get

sk = iϵkji
∫

d3p

(2π)3

∑
λ,λ′=±

[
ϵ∗j (p, λ)ϵi(p, λ

′)− ϵ∗i (p, λ)ϵj(p, λ
′)
]
â†p,λâp,λ′ , (100)

which is exactly Eq. (76).
□
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Exercise 15

Prove that if γµ are N × N matrices satisfying the Clifford algebra

{γµ, γν} = 2ηµν1N , (101)

where 1N is the N dimensional identity matrix, then the matrices

σµν =
i

4
[γµ, γn] (102)

satisfy the Lorentz algebra, as given in problem 5, Eq. (37).

Solution:

Let γµ be a set of N ×N matrices satisfying the Clifford algebra

{γµ, γν} = 2ηµν1N . (103)

Consider the operator

σµν =
i

4
[γµ, γν ] , (104)

which we can rewrite as

σµν =
i

4
(γµγν − γνγµ) =

i

4
(γµγν

−{γµ,γν}=−2gµν︷ ︸︸ ︷
−γνγµ − γµγν +γµγν) =

i

2
(γµγν − ηµν) . (105)

In order to show that it satisfies the Lorentz algebra, we start by computing the commutator [σµν , σρσ].
Using the property

γµγν = 2ηµν − γνγµ , (106)

we obtain the following expression

4[σµν , σρσ] =− [γµγν −��η
µν , γργσ −�

�ηρσ] = −[γµγν , γργσ]

=− γµ(γνγρ)γσ + γρ(γσγµ)γν

=− 2ηνργµγσ + γµγργνγσ + 2ησµγργν − γργµ(γσγν)

=− 2ηνργµγσ + 2ησµγργν − 2ησνγργµ + (γµγρ)γνγσ + γργµγνγσ

=− 2ηνργµγσ + 2ησµγργν − 2ησνγργµ + 2ηµργνγσ −�����γργµγνγσ +�����γργµγνγσ

=− 2ηνργµγσ + 2ησµγργν − 2ησνγργµ + 2ηµργνγσ .

(107)

At this point, by using the identity

2γµγν = [γµ, γν ] + {γµ, γν} = [γµ, γν ] + 2ηµν1N , (108)

we find

4[σµν , σρσ] =− ηνρ
(
[γµ, γσ] +�

��2ηµσ
)
+ ησµ

(
[γρ, γν ] +���2ηρν

)
− ησν

(
[γρ, γµ] +���2ηρµ

)
+ ηµρ

(
[γν , γσ] +�

��2ηνσ
)

=+ i
(
ηνρi[γµ, γσ] + ησµi[γν , γρ]− ησνi[γµ, γρ]− ηµρi[γν , γσ]

)
,

(109)

that is
[σµν , σρσ] = i

(
ηνρσµσ + ησµσνρ − ησνσµρ − ηµρσνσ

)
. (110)

This proves that σµν satisfies the Lorentz algebra (see Eq. (37) of Problem 5).
□

23



Exercise 16

(...)

Solution:

(...)
□

24



Exercise 17

Write the Dirac equations satisfied by the left and right component of a generic Dirac field ψ, defined
as ψL(x) ≡ 1−γ5

2 ψ(x) and ψR(x) ≡ 1+γ5

2 ψ(x). Determine explicitly the form of the γ5 matrix in the
Weyl representation of the Dirac matrices.

Solution:

Consider the following definitions:{
P̂L ≡ 1−γ5

2 ,

P̂R ≡ 1+γ5

2 ,
=⇒

{
ψL(x) ≡ P̂Lψ(x) ,

ψR(x) ≡ P̂Rψ(x) .
(111)

Notice that
γµP̂L =

1

2
(γµ − γµγ5) =

1

2
(γµ + γ5γµ) = P̂Rγ

µ , (112)

since γµγ5 = −γ5γµ. Similarly,
γµP̂R = P̂Lγ

µ . (113)

Applying P̂L and P̂R to the Dirac equation, we find

0 = P̂L(i/∂ −m)ψ(x) = P̂Lγ
µi∂µψ(x)−mP̂Lψ(x) = i/∂ψR(x)−mψL(x) (114)

and
0 = P̂R(i/∂ −m)ψ(x) = P̂Rγ

µi∂µψ(x)−mP̂Rψ(x) = i/∂ψL(x)−mψR(x) , (115)

which means that the Dirac equations satisfied by ψL,R are{
i/∂ψR(x) = mψL(x) ,

i/∂ψL(x) = mψR(x) .
(116)

In Weyl (chiral) representation, γµ matrices are defined as

γµ =

(
02 σµ

σ̄µ 02

)
, (117)

with σµ = (12,σ) and σ̄µ = (12,−σ) , where σi are the Pauli matrices. Therefore, by the definition of
γ5, we find

γ5 ≡ i γ0γ1γ2γ3 = i

(
σ̄1σ2σ̄3 02

02 σ1σ2σ̄3

)
= i

(
σ1σ2σ3 02

02 −σ1σ2σ3

)
=

(
−12 02

02 12

)
, (118)

which implies

P̂L =

(
12 02

02 02

)
, P̂R =

(
02 02

02 12

)
. (119)

□
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Exercise 18

Show that if the solutions of the Dirac equations are normalized as

ur(p)us(p) = 2mδrs , (120)

then
ur†(p)us(p) = 2Ep δ

rs . (121)

Solution:

If ψ(x) is a plane-wane solution of the Dirac equation, i.e.

ψ(x) = us(p)e−ipx , (122)

then the spinor us(p) must satisfy the equation(
/p−m

)
us(p) = 0 . (123)

In what follows we use the chiral representation

us(p) =

(
usL(p)
usR(p)

)
. (124)

In order to solve Eq. (123), we move to the rest frame of the particle (which is always possible in the
massive case m ̸= 0), so that the equation becomes(

γ0E0 −m
)
us(0) = 0 =⇒

(
γ0 − 1

)
us(0) = 0 , (125)

where we used that in the rest frame E0 = m. In the chiral representation, where γ0 reads

γ0 =

(
02 12

12 02

)
, (126)

Eq. (125) becomes (
−12 12

12 −12

)(
usL(0)
usR(0)

)
= 0 , (127)

which implies
usL(0) = usR(0) . (128)

After imposing Eq. (128), we have to choose the normalization of the vectors usL(0) and usR(0). It is
common to adopt the convention

usL(0) = usR(0) =
√
mξs , (129)

where ξs with s = 1, 2 are two orthonormal vectors of two components such that

ξs† · ξr = δsr . (130)

In conclusion, we have

us(0) =
√
m

(
ξs

ξs

)
. (131)

To come back to a generic frame, we need to apply a boost. We remind that the left and right components
of the Dirac field transform as

ψL 7→ ΛLψL = exp
[
(−iθ − η) · σ

2

]
ψL ,

ψR 7→ ΛRψR = exp
[
(−iθ + η) · σ

2

]
ψR ,

(132)
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where η and θ are the rapidity and the angle of the Lorentz transformation, respectively. Note that,
since we are applying a boost, we have θ = 0, that is

ψL 7→ ΛLψL = e−
η·σ
2 ψL ,

ψR 7→ ΛRψR = e
η·σ
2 ψR .

(133)

At this point it is convenient to rewrite Eq. (133) in terms of the matrices 12 and σi. For simplicity, we
consider a boost along the ẑ axis

ΛL = e−
ησz
2 = cosh

η

2
12 − sinh

η

2
σz ,

ΛR = e
ησz
2 = cosh

η

2
12 + sinh

η

2
σz .

(134)

Using the definitions of cosh and sinh, it is straightforward to see that

ΛL =
√
cosh η + sinh η

(
12 − σz

2

)
+
√
cosh η − sinh η

(
12 + σz

2

)
,

ΛR =
√
cosh η + sinh η

(
12 + σz

2

)
+
√
cosh η − sinh η

(
12 − σz

2

)
.

(135)

The rapidity η has to be rewritten in terms of the parameter of the boost pz. In order to do so, we remind
that a Lorenz transformation of a generic 4-vector V µ along the ẑ axis is6

V 0 7→ cosh ηV 0 + sinh ηV 3 ,

V 3 7→ sinh ηV 0 + cosh ηV 3 ,
(136)

which implies

cosh η = γ =
Ep

m
,

sinh η = βγ =
pz

m
.

(137)

Pluggin Eq. (137) into Eq. (135), we find

ΛL =

√
Epz + pz

m

(
12 − σz

2

)
+

√
Epz − pz

m

(
12 + σz

2

)
,

ΛR =

√
Epz + pz

m

(
12 + σz

2

)
+

√
Epz − pz

m

(
12 − σz

2

)
.

(138)

We can now apply the above Lorentz transformation to us(0), i.e.

us(0) → us(p) =
√
m

(
ΛLξ

r

ΛRξ
r

)
=

([√
Epz + pz

(
12−σz

2

)
+
√
Epz − pz

(
12+σz

2

)]
ξr[√

Epz + pz
(

12+σz

2

)
+
√
Epz − pz

(
12−σz

2

)]
ξr

)
, (139)

where the two components ξs are chosen as

ξ1 =

(
1
0

)
, ξ2 =

(
0
1

)
. (140)

Taking the hermitian conjugate of Eq. (139) and applying γ0, we obtain

us(p) = us†(p)γ0 =

(
ξr†
[√

Epz + pz
(

12+σz

2

)
+
√
Epz − pz

(
12−σz

2

)]
ξr†
[√

Epz + pz
(

12−σz

2

)
+
√
Epz − pz

(
12+σz

2

)]) . (141)

6We stress that we use the active point of view, i.e. we boost the system and not the reference.
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Finally, we can compute

ur(p)us(p) = 2ξr†
[√

Epz + pz
(

12 + σz
2

)
+
√
Epz − pz

(
12 − σz

2

)]
×
[√

Epz + pz
(

12 − σz
2

)
+
√
Epz − pz

(
12 + σz

2

)]
ξs .

(142)

Using the properties (
12 ± σz

2

)2

=

(
12 ± σz

2

)
,

(
12 ± σz

2

)(
12 ∓ σz

2

)
= 0 , (143)

at the end we get

ur(p)us(p) = 2ξr†

√E2
pz − (pz)2︸ ︷︷ ︸

m

(
12 + σz

2

)
+
√
E2

pz − (pz)2︸ ︷︷ ︸
m

(
12 − σz

2

) ξs = 2mδrs . (144)

This result is a direct consequence of the normalization we chose in Eq. (129). In the same way, starting
from Eq. (139) and computing us†(p), we can show that

ur†(p)us(p) = 2Ep δ
rs , (145)

that is again a consequence of our normalization choice in Eq. (129). In conclusion, we showed that if
Eq. (144) holds, then Eq. (145) holds as well.

□
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Exercise 19

(...)

Solution:

(...)
□
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Exercise 20

Define creation and annihilation operators âp,s, â†p,s, b̂p,s and b̂†p,s for the Dirac field according to

ψ(x) =

∫
d3p

(2π)3
1√
2Ep

∑
s=1,2

(
us(p)âp,se

−ipx + vs(p)b̂†p,se
ipx
)
, (146)

where us(p) and vs(p) are solution to the momentum-space Dirac equation, and determine in term
of these operators the expression of the Dirac Hamiltonian

H =

∫
d3x ψ(x) (iγ ·∇+m)ψ(x) . (147)

Solution:

Consider the Dirac equation

(iγµ∂µ −m)ψ(x) =
(
iγ0∂0 + γi∂i −m

)
ψ(x) = 0 , (148)

which can be rewritten as
iγ0∂0ψ(x) =

(
−iγi∂i +m

)
ψ(x) . (149)

Using that γ ·∇ = γi ∂
∂xi = γi∂i, we find

H =

∫
d3x ψ†(x)γ0iγ0∂0ψ(x) = i

∫
d3x ψ†(x)∂0ψ(x) . (150)

The derivative of ψ with respect to the time reads

∂0ψ(x) = i

∫
d3p

(2π)3

√
Ep

2

∑
s

(
−us(p)âp,se−ipx + vs(p)b̂†p,se

ipx
)
, (151)

so we plug this expression into Eq. (150), getting

H = i

∫
d3x

∫
d3p

(2π)3
1√
Ep

∑
s

(
us†(p)â†p,se

ipx + vs†(p)b̂p,se
−ipx

)
× i

∫
d3p′

(2π)3

√
Ep′

2

∑
s′

(
−us

′
(p′)âp′,s′e

−ip′x + vs
′
(p′)b̂†p′,s′e

ipx
)

=

∫
d3x

d3pd3p′

(2π)6
1√
Ep

√
Ep′

2

∑
s,s′

(
us†(p)us

′
(p′)â†p,sâp′,s′e

i(p−p′)x

− us†(p)vs
′
(p′)â†p,sb̂

†
p′,s′e

i(p+p′)x + vs†(p)us
′
(p′)b̂p,sâp′,s′e

−i(p+p′)x

− vs†(p)vs
′
(p′)b̂p,sb̂

†
p′,s′e

−i(p−p′)x
)
.

(152)

Then we notice that∫
d3x ei(p−p

′)x = ei(Ep−E′
p′ )t

∫
d3x e−i(p−p

′)·x

= ei(

=0︷ ︸︸ ︷
Ep − Ep′ )t(2π)3δ(3)(p− p′) = (2π)3δ(3)(p− p′) ,

(153)

through which we can rewrite H as

H =

∫
d3p

(2π)3
1

2

∑
s,s′

(
us†(p)us

′
(p)â†p,sâp,s′ − us†(p)vs

′
(−p)â†p,sb̂

†
−p,s′e

2iEpt

+vs†(p)us
′
(−p)b̂p,sâ−p,s′e

−2iEpt − vs†(p)vs
′
(p)b̂p,sb̂

†
p,s′

)
,

(154)

30



Finally, applying the relations

us†(p)us
′
(p) = vs†(p)vs

′
(p) = 2Epδ

ss′ , (155)

us†(p)vs
′
(−p) = vs†(p)us(−p) = 0 , (156)

and using the normal ordering

: âp,sâ
†
p′,s : = −â†p′,sâp,s ,

: b̂p,sb̂
†
p′,s : = −b̂†p′,sb̂p,s ,

(157)

we find

H =

∫
d3p

(2π)3
Ep

∑
s

(
â†p,sâp,s + b̂†p,sb̂p,s

)
. (158)

The normal ordering in Eq. (158) is understood.
□
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Exercise 21

(...)

Solution:

(...)
□
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Exercise 22

First, determine the classical action for a one-dimensional free particle with fixed initial and final
conditions. Then determine explicitly the matrix element of the time-evolution operator

K(q′, t′; q, t) ≡ ⟨q′, t′|q, t⟩ = ⟨q′| e−iĤ(t−t′) |q⟩ , (159)

and show that is equal to the exponential of the classical action, times a factor of i. DMT: Why
times a factor of i?

Solution:

a) Let Ĥ = p̂2/(2m) be the Hamiltonian of a one-dimensional free particle and let T = t − t′. Then
the classical action reads

⟨q′, t′|q, t⟩ = ⟨q′| e−iĤT |q⟩ =
∫ ∞
−∞

dp ⟨q′| e−iĤT |p⟩ ⟨p|q⟩ =
∫ ∞
−∞

dp ⟨q′|p⟩ ⟨p|q⟩ e−i
p2

2mT

=

∫ ∞
−∞

dp
eipq

′

√
2π

e−ipq√
2π

e−i
p2

2mT =

∫ ∞
−∞

dp

2π
e−i

T
2mp2+ip(q′−q)

=

√
m

2πi T
ei

m
2T (q′−q)2 , (160)

where in the last line we used the formula for the Gaussian integral∫ ∞
−∞

dp e−ap
2+bp+c =

√
π

a
e

b2

4a+c . (161)

b) To determine Eq. (159), we divide the time interval T = t − t′ in N + 1 equal pieces of duration
δt = T/(N + 1) and then we introduce N complete sets of position eigenstates to get

⟨q′, t′|q, t⟩ =

(
N∏
i=1

∫
dqi

)
⟨qN+1| e−iĤδt |qN ⟩ ⟨qN | e−iĤδt |qN−1⟩ ... ⟨q1| e−iĤδt |q0⟩ , (162)

with boundary conditions qN+1 = q′ and q0 = q. Using Eq. (160) with T 7→ δt we find

⟨qj+1| e−iĤδt |qj⟩ =
√

m

2πi δt
ei

m
2δt (qj+1−qj)2 , (163)

from which it follows that

⟨q′, t′|q, t⟩ =
( m

2πi δt

)N+1
2

(
N∏
i=1

∫
dqi

)
ei

m
2δt

∑N
j=1(qj+1−qj)2 . (164)

Let’s compute all the dqi integrals step by step. Defining c = i δt/m and using Eq. (161), the
integral over q1 reads ∫ ∞

−∞
dq1 e

− (q2−q1)2

2c e−
(q1−q0)2

2c =

√
(2πc)

2
e−

(q2−q0)2

4c . (165)

Moving to the integral over q2, still using Eq. (161) we find∫ ∞
−∞

dq2 e
− (q3−q2)2

2c e−
(q2−q0)2

4c =

√
2(2πc)

3
e−

(q3−q0)2

6c . (166)
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If we iterate this process N times, the integral over qN must be∫ ∞
−∞

dqN e−
(qN+1−qN )2

2c e−
(qN−q0)2

2Nc =

√
N(2πc)

N + 1
e−

(qN+1−q0)2

2(N+1)c . (167)

In conclusion, the integration over all the qi gives(
N∏
i=1

∫
dqi

)
e−

∑N
j=1

(qj+1−qj)
2

2c = e−
(qN+1−q0)2

2(N+1)c

N∏
i=1

√
i(2πc)

i+ 1
=

√
(2πc)N

N + 1
e−

(qN+1−q0)2

2(N+1)c . (168)

Therefore, we can replace this result inside Eq. (164) and get

⟨q′, t′|q, t⟩ =

√
1

2πc(N + 1)
e−

(qN+1−q0)2

2(N+1)c =

√
m

2πi T
ei

m
2T (q′−q)2 , (169)

where in the last equality we used that

1

(N + 1)c
=

m

i(N + 1)δt
= i

m

T
. (170)

We have thus obtained Eq.(161).

□
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Exercise 23

(...)

Solution:

(...)
□
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Exercise 24

Compute, using the generating functional, the four-point function

G(4)(x1, x2, x3, x4) = ⟨0|T[ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)] |0⟩ (171)

for a free real scalar field.

Solution:

The 4-point function in a free scalar real theory can be written as

⟨0|T[ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)] |0⟩ =
1

Z0

[
δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)

δ

δJ(x4)
Z[J ]

]
J=0

, (172)

where Z[J ] is the generating functional of the Green’s functions defined as

Z[J ] = Z0 exp

[
1

2

∫
d4xd4y J(x)D(x− y)J(y)

]
, (173)

where we defined Z0 = Z[J = 0]. Let’s compute the derivatives in Eq. (172) one at the time. The first
derivative reads

δ

δJ(x1)
Z[J ] =

Z[J ]

2

∫
d4x d4y

[
δJ(x)

δJ(x1)
D(x− y)J(y) + J(x)D(x− y)

δJ(y)

δJ(x1)

]
= Z[J ]

∫
d4xJ(x)D(x− x1) ,

(174)

where we used
δJ(xi)

δJ(xj)
= δ(4)(xi − xj) . (175)

For the other derivatives, we proceed in the same way. Defining D(xi − xj) ≡ Dij we get

δ

δJ(x2)

δ

δJ(x1)
Z[J ] = Z[J ]

∫
d4y J(y)D(y − x2)

∫
d4xJ(x)D(x− x1) + Z[J ]D12 , (176)

δ

δJ(x3)

δ

δJ(x2)

δ

δJ(x1)
Z[J ] = Z[J ]

∫
d4z J(z)D(z − x3)

×
∫

d4y J(y)D(y − x2)

∫
d4xJ(x)D(x− x1)

+ Z[J ]D23

∫
d4xJ(x)D(x− x1)

+ Z[J ]D13

∫
d4xJ(x)D(x− x2)

+ Z[J ]D12

∫
d4xJ(x)D(x− x3) ,

(177)

[
δ

δJ(x4)

δ

δJ(x3)

δ

δJ(x2)

δ

δJ(x1)
Z[J ]

]
J=0

= Z0

[
D14D23 +D13D24 +D12D34

]
, (178)

where we set J = 0 in the last equation. The final result is then

G(x1, x2, x3, x4) = D14D23 +D13D24 +D12D34 . (179)

□
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Exercise 25

(...)

Solution:

(...)
□
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Exercise 26

Prove that if θi are (complex) components of an N -dimensional vector of Grassmann numbers and
B is an N ×N matrix, then(

N∏
k=1

∫
dθ∗kdθk

)
θiθ
∗
j e
−θ∗

mBmnθn = (B−1)ij detB , (180)

where we assume the convention that the repeated indices are implicitly summed.

Solution:

Assume in what follows that θk and θ′∗k are two independent variables. Before proving Eq. (180), we first
show that the following identity holds(

N∏
k=1

∫
dθ∗kdθk

)
e−θ

∗
mBmnθn = detB . (181)

To do so, we start introducing two unitary matrices U and V such that

BD = UBV (182)

is diagonal with non-negative numbers on the diagonal7 Then, we perform the change of variables

θ′p = (V †)pnθn , θ′∗l = θ∗m(U†)ml , (183)

through which we find

θ∗mBmnθn = θ∗m(U†UBV V †)mnθn = θ∗m(U†)ml(BD)lp(V
†)pnθn = θ′∗l (BD)lpθ

′
p ≡ bl θ

′∗
l θ
′
l , (184)

where we used (BD)lpθ
′
p = bl θ

′
l. Relabelling the index l as n, we can rewrite the l.h.s of Eq. (181) as(

N∏
k=1

∫
dθ∗kdθk

)
e−θ

∗
mBmnθn =

1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
e−bn θ′∗

n θ′
n , (185)

where detU and detV come from the Jacobian of the change of the variables of integration. At this point
we write the exponential in Eq. (185) as a power series of bn θ′∗n θ′n, i.e.

1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
e−bn θ′∗

n θ′
n =

1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

) ∞∑
s=0

(−bn θ′∗n θ′n)s

s!
. (186)

Consider first the case N = 1. We simply use the properties

(θ′)2 = (θ′∗)2 = 0 ,

∫
dθ′∗dθ′ θ′θ′∗ = 1 ,

∫
dθ′∗dθ′ = 0 , (187)

to show that∫
dθ′∗dθ′ e−b θ

′∗θ′
=

∫
dθ′∗dθ′

∞∑
s=0

(−b θ′∗θ′)s

s!
=

∫
dθ′∗dθ′

∞∑
s=0

(b θ′θ′∗)s

s!

=

∫
dθ′∗dθ′(1 + b θ′θ′∗ + higher powers of θ′θ′∗ that vanish)

= b

∫
dθ′∗dθ′ θ′θ′∗ ≡ b ,

(188)

7A generic matrix (it can even be rectangular) can always be diagonalized by means of two unitary matrices into a
diagonal non-negative matrix. See https://en.wikipedia.org/wiki/Singular_value_decomposition for more details.
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which satisfies the Eq. (181). Moving to the case of N generic, in analogy with the case N = 1 we see
that the only non-vanishing contribution on the r.h.s. of Eq. (186) can come from the power s = N , since
only the latter produces a term of the kind θ′1θ′∗1 ...θ′Nθ

′∗
N which does not vanish once integrated. In fact,

from N = 1 we see that each θ′nθ
′∗
n pair must appear raised exactly to the power of 1, otherwise the

integrals vanish. Therefore, using the multinomial theorem to read the explicit formula of (−bn θ′∗n θ′n)N ,
we find8

(−bn θ′∗n θ′n)N

N !
=

N∏
j=1

bj θ
′
jθ
′∗
j + contributions that vanish once integrated , (189)

through which we finally obtain(
N∏

k=1

∫
dθ∗kdθk

)
e−θ

∗
mBmnθn =

1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
(−bn θ′∗n θ′n)N

N !

=
1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
N∏
j=1

bj θ
′
jθ
′∗
j

=
1

detU

1

detV

N∏
k=1

bk

∫
dθ′∗k dθ′k θ

′
kθ
′∗
k︸ ︷︷ ︸

=1

=
1

detU

1

detV

N∏
k=1

bk

=
detBD

detU detV
≡ detB . (190)

This proves Eq. (181).
Now we have all the instruments to compute the integral of Eq. (180). First, we apply the change of

coordinates of Eq. (183), rewriting the l.h.s. of the Eq. (180) (we call it Iij for convenience) as

Iij =

(
N∏

k=1

∫
dθ∗kdθk

)
θiθ
∗
j e
−θ∗

mBmnθn =
1

detU

1

detV

(∏
k

∫
dθ′∗k dθ′k

)
VilUpj θ

′
lθ
′∗
p e
−bn θ′∗

n θ′
n . (191)

Then we write the exponential as in Eq. (186), i.e.

Iij =
1

detU

1

detV

(∏
k

∫
dθ′∗k dθ′k

)
VilUpj θ

′
lθ
′∗
p

∞∑
s=0

(−bn θ′∗n θ′n)s

s!
. (192)

This time the non-vanishing contribution comes from the power s = N − 1. In fact, since the integrals
do not vanish only if the integrand is a term of the kind θ′1θ′∗1 ...θ′Nθ

′∗
N , and since we already have an extra

θ′lθ
′∗
p pair, then we need precisely other N−1 θ′nθ

′∗
n pairs to get θ′1θ′∗1 ...θ′Nθ

′∗
N . Therefore, setting s = N−1

and using again the multinomial theorem, we find

(−bn θ′∗n θ′n)N−1

(N − 1)!
=

N∑
r=1

N∏
t̸=r

bt θ
′
tθ
′∗
t + contributions that vanish once integrated . (193)

In other words, the contribution we are interested in has the form

b2θ
′
2θ
′∗
2 b3θ

′
3θ
′∗
3 ...bNθ

′
Nθ
′∗
N + b1θ

′
1θ
′∗
1 b3θ

′
3θ
′∗
3 ...bNθ

′
Nθ
′∗
N + · · ·+ b1θ

′
1θ
′∗
1 b2θ

′
2θ
′∗
2 ...bN−1θ

′
N−1θ

′∗
N−1 . (194)

Putting this expression in place of the exponential in Eq. (192), we find

Iij =
1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
VilUpj θ

′
lθ
′∗
p

N∑
r=1

N∏
t ̸=r

bt θ
′
tθ
′∗
t . (195)

8Remember that θ′∗n θ′n = −θ′nθ′∗n .
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Notice that the condition θ′lθ
′∗
p = δlpθ

′
lθ
′∗
l must hold, otherwise a pair remains “unmatched” and the

corresponding integral vanishes. It follows that

Iij =
1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
VilUlj θ

′
lθ
′∗
l

N∑
r=1

N∏
t ̸=r

bt θ
′
tθ
′∗
t

=
1

detU

1

detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
(b1...bN )Vil

1

bl
Ulj θ

′
lθ
′∗
l

N∑
r=1

N∏
t̸=r

θ′tθ
′∗
t . (196)

Finally, we point out that the integrals vanish if r ̸= l, because in that case we would have a missing
θ′θ′∗ pair and another pair raised to the power of 2. In other words, we have to multiply to every piece
of Eq. (194) the missing couple of θ′θ′∗. So, also by noticing that 1/bl = (B−1D )ll, we find

Iij =
detBD

detU detV

(
N∏

k=1

∫
dθ′∗k dθ′k

)
Vil(B

−1
D )llUlj θ

′
1θ
′∗
1 ...θ

′
Nθ
′∗
N

= detB

(
N∏

k=1

∫
dθ′∗k dθ′k θ

′
kθ
′∗
k

)
Vil(B

−1
D )llUlj︸ ︷︷ ︸

≡ (B−1)ij

= (B−1)ij detB , (197)

where we used
B−1D = (UBV )−1 = V −1B−1U−1 =⇒ V B−1D U = B−1 . (198)

We have thus obtained Eq. (180).
□
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Exercise 27

Compute explictly the two-point function for a Dirac field

G(2)(x, x) = ⟨0|T[ψa(x)ψb(y)] |0⟩ , (199)

by expressing the field in terms of creation and annihilation operators and using the anticommutation
relations.

Solution:

We start by writing the the two-point function as

G(2)(x, y) = ⟨0|T[ψa(x)ψb(y)] |0⟩
≡ Θ

(
x0 − y0

)
⟨0|ψa(x)ψb(y) |0⟩ −Θ

(
y0 − x0

)
⟨0|ψb(y)ψa(x) |0⟩ ,

(200)

where we express the fields in terms of creation and annihilation operators as

ψa(x) =

∫
d3p

(2π)3
1√
2Ep

∑
s

(
âp,su

s(p)e−ipx + b̂†p,sv
s(p)eipx

)
,

ψb(x) =

∫
d3p

(2π)3
1√
2Ep

∑
s

(
b̂p,sv

s(p)e−ipx + â†p,su
s(p)eipx

)
,

(201)

with

fermion : âp,s |0⟩ , â†p,s |0⟩ =
1√
2Ep

|p, s⟩ ,

antifermion : b̂p,s |0⟩ , b̂†p,s |0⟩ =
1√
2Ep

|p, s⟩ .
(202)

We first consider the term with x0 > y0. In this case we have

⟨0|ψa(x)ψb(y) |0⟩ =
∫

d3p

(2π)3
d3p′

(2π)3
1√
2Ep

1√
2Ep′

∑
s

⟨0|
(
âp,su

s
a(p)e

−ipx + b̂†p,sv
s
a(p)e

ipx
)

×
∑
s′

(
b̂p′,sv

s′

b (p
′)e−ip

′y + â†p′,s′u
s
b(p
′)eip

′y
)
|0⟩

=

∫
d3p

(2π)3
d3p′

(2π)3
1√

4EpEp′

∑
ss′

usa(p)u
s′

b (p
′) e−ipxeip

′y ⟨0| âp,sâ†p′,s′ |0⟩ ,

=

∫
d3p

(2π)3
d3p′

(2π)3
1√

4EpEp′

∑
ss′

usa(p)u
s′

b (p
′) e−ipxeip

′y ⟨p, s|p′, s′⟩ , (203)

where in the last step we used the relations in Eq. (202). Remember that the physical states satisfy the
condition

⟨p, s|p′, s′⟩ = 2Ep(2π)
3δ(3)(p− p′)δss′ , (204)

se we can rewrite ⟨0|ψa(x)ψb(y) |0⟩ as

⟨0|ψa(x)ψb(y) |0⟩ =
∫

d3p

(2π)3
d3p′

(2π)3
2Ep(2π)

3δ(3)(p− p′)√
4EpEp′

∑
ss′

δss
′
usa(p)u

s′

b (p
′) e−ipx+ip′y

=

∫
d3p

(2π)3
1

2Ep

∑
s

usa(p)u
s
b(p)︸ ︷︷ ︸

=(/p+m)ab

e−ip(x−y)
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=

∫
d3p

(2π)3
1

2Ep
(/p+m)ab e

−ip(x−y)

= (i/∂x +m)ab

∫
d3p

(2π)3
1

2Ep
e−ip(x−y) . (205)

As for the case x0 < y0, it can be computed in an analogous way as x0 > y0. The result reads

⟨0|ψb(y)ψa(x) |0⟩ = −(i/∂x +m)ab

∫
d3p

(2π)3
1

2Ep
eip(x−y) . (206)

Therefore, combining the results of Eqs. (205) and (206), we obtain

⟨0|T[ψa(x)ψb(y)] |0⟩ = (i/∂x +m)ab

∫
d3p

(2π)3
1

2Ep

[
Θ
(
x0 − y0

)
e−ip(x−y) +Θ

(
y0 − x0

)
eip(x−y)

]
= (i/∂x +m)ab

∫
d4p

(2π)4
i

p2 −m2 + iϵ
e−ip(x−y)

=

∫
d4p

(2π)4
i(/p+m)

p2 −m2 + iϵ
e−ip(x−y) ,

(207)

that is the final result of the problem. The only non-trivial step is how to move from the first to the
second line of Eq. (207). Let’s show they are the same. First, we rewrite the second line as∫

d4p

(2π)4
i

p2 −m2 + iϵ
e−ip(x−y) =

∫
d3p

(2π)3
eip·(x−y)

∫ ∞
−∞

dp0

2π

i

(p0)2 − E2
p + iϵ

e−ip
0(x0−y0) . (208)

Regarding the integral over p0, the integrand has two poles in p0 = ±Ep(1− iϵ/2E2
p), so we can use the

residue theorem to compute it. Specifically, we close the integration path below the x axis if x0 > y0 and
above the x axis if y0 > x0. For instance, in the case x0 > y0 we get∫ ∞

−∞

dp0

2π

i

(p0)2 − E2
p + iϵ

e−ip
0(x0−y0) =

i

2π
(−2πi)

e−iEp(x
0−y0)

2Ep
=
e−iEp(x

0−y0)

2Ep
. (209)

Doing the same also for y0 > x0, one easily obtains the first line of Eq. (207).
Clearly the method just proposed requires knowing the second line of Eq. (207) a priori. We show

below a second approach that allows us to obtain the second line starting from the first. To do so, it is
useful to introduce an integral representation for the Heaviside function

Θ(t) = i

∫ +∞

−∞

dω

2π

e−iωt

ω + iϵ
, (210)

through which we find∫
d3p

(2π)3
1

2Ep
Θ
(
x0 − y0

)
e−ip(x−y) = i

∫
d3p

(2π)3
1

2Ep

∫ ∞
−∞

dω

2π

e−i(ω+p0)(x0−y0)+ip·(x−y)

ω + iϵ

= i

∫
d3p

(2π)3
eip·(x−y)

2Ep

∫ ∞
−∞

dω̃

2π

e−iω̃(x0−y0)

ω̃ − p0 + iϵ

(211)

and9 ∫
d3p

(2π)3
1

2Ep
Θ
(
y0 − x0

)
eip(x−y) = i

∫
d3p

(2π)3
e−ip·(x−y)

2Ep

∫ ∞
−∞

dω̃

2π

eiω̃(x0−y0)

ω̃ − p0 + iϵ

=− i

∫
d3p

(2π)3
eip·(x−y)

2Ep

∫ ∞
−∞

dω̃

2π

e−iω̃(x0−y0)

ω̃ + p0 − iϵ
.

(212)

9In the second line of the following equation, we send ω̃ 7→ −ω̃ and p 7→ −p.
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It follows that (recall that p0 = Ep)∫
d3p

(2π)3
1

2Ep

[
Θ(x0 − y0)e−ip(x−y) +Θ(y0 − x0)eip(x−y)

]
=

= i

∫
d3p

(2π)3
eip·(x−y)

∫ ∞
−∞

dω̃

2π

e−iω̃(x0−y0)

ω̃2 − E2
p + iϵ

.

(213)

At this point, we define the momentum p̃µ = (ω̃,p) and, since the latter is and integrated variable, we
relabel it as p̃µ 7→ pµ. We thus conclude that∫

d3p

(2π)3
1

2Ep

[
Θ
(
x0 − y0

)
e−ip(x−y) +Θ

(
y0 − x0

)
eip(x−y)

]
=

∫
d4p

(2π)4
i

p2 −m2 + iϵ
e−ip(x−y) , (214)

which proves the step used in Eq. (207).
□
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Exercise 28

Prove that if one defines

âp(t) = i

∫
d3x√
2ω
ei(ωt−p·x)

↔
∂ t ϕ(t,x) , (215)

where f
↔
∂ t g ≡ f(∂tg)− (∂tf)g, then

ϕ(t,x) =

∫
d3p

(2π)3
√
2ω

[
e−ipxâp(t) + eipxâ†p(t)

]
, (216)

with pµ = (ω,p).

Solution:

In order to prove that Eq. (216) holds, we rewrite explicitly its r.h.s. to show that it is equivalent to
ϕ(t,x). To do so, we first compute e−ipxâp(t) as

e−ipxâp(t) = i

∫
d3y√
2ω

[
ei(ωt−p·y)−ipx∂tϕ(t,y)− e−ipx

(
∂te

i(ωt−p·y))ϕ(t,x)]
= i

∫
d3y√
2ω
ei(ωt−p·y)−ipx

[
∂tϕ(t,y)− iωϕ(t,y)

]
= i

∫
d3y√
2ω
eip·(x−y)

[
∂tϕ(t,y)− iωϕ(t,y)

]
,

(217)

where
i(ωt− p · y)− ipx = i(ωt− p · y)− i(ωt− p · x) = ip · (x− y) , (218)

and its complex conjugate as

eipxâ†p(t) =
(
e−ipxâp

)†
= −i

∫
d3y√
2ω
e−ip·(x−y)

[
∂tϕ(t,y) + iωϕ(t,y)

]
. (219)

Then, we substitute these expressions inside the r.h.s. of the Eq. (216), getting∫
d3p

(2π)3
√
2ω

[
e−ipxâp(t) + eipxâ†p(t)

]
= i

∫
d3p

(2π)3
√
2ω

∫
d3y√
2ω

[
∂tϕ(t,y)

(
eip·(x−y) − e−ip·(x−y)

)
− iωϕ(t,y)

(
eip·(x−y) + e−ip·(x−y)

) ]
.

(220)

Finally, since ∫
d3p

(2π)3
eip·(x−y) =

∫
d3p

(2π)3
e−ip·(x−y) = δ(3)(x− y) , (221)

we obtain∫
d3p

(2π)3
√
2ω

[
e−ipxâp(t) + eipxâ†p(t)

]
= i

∫
d3y

2ω

[
∂tϕ(t,y)

(
������
δ(3)(x− y)−������

δ(3)(x− y)
)
− iωϕ(t,y)

(
δ(3)(x− y) + δ(3)(x− y)

) ]
= i

∫
d3y

2ω
2ω ϕ(t,y)δ(3)(x− y) ≡ ϕ(t,x) ,

(222)

which proves the Eq. (216).
□
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Exercise 29

Prove the reduction formula for a fermion field, namely, for incoming and outgoing particles,

⟨ps1
1 ...p

sn
n , out|kr1

1 ...k
rm
m , in⟩

=

∫
d4x1...d

4xm d4y1...d
4yn e

i(p1y1+...+pnyn−k1x1−...−kmxm)

× us1(p1)S̃
−1(y1)...u

sn(pn)S̃
−1(yn) ⟨0|T

[
ψ(y1)...ψ(yn)ψ(x1)...ψ(xm)

]
|0⟩

× S̃−1(x1)u
r1(k1)...S̃

−1(xm)urm(km) ,

(223)

and u↔ v, u↔ v , k ↔ −k for outgoing or incoming antiparticles respectively (an outgoing particle
is like an incoming antiparticle and conversely).

Solution:

We begin by observing that the expansion of a free fermion field ψ(x) in terms of creation and annihilation
operators â†p,s and âp,s (see Eq. (146)) can be inverted to give

√
2Ep â

†
p,s =

∫
d3xψ(x)γ0us(p)e−ipx ,√

2Ep âp,s =

∫
d3x γ0ψ(x)us(p)eipx .

(224)

This means that the free operators are defined as10√
2Ep â

in†
p,s = Z−

1
2 lim
t→−∞

∫
d3xψ(x)γ0us(p)e−ipx , (227)√

2Ep â
in
p,s = Z−

1
2 lim
t→−∞

∫
d3x γ0ψ(x)us(p)eipx , (228)√

2Ep â
out†
p,s = Z−

1
2 lim
t→∞

∫
d3xψ(x)γ0us(p)e−ipx , (229)√

2Ep â
out
p,s = Z−

1
2 lim
t→∞

∫
d3x γ0ψ(x)us(p)eipx . (230)

We remind that one-particle initial of final states are defined as

|ps, in⟩ =
√
2Ep â

in†
p,s |0⟩ , (231)

|ps, out⟩ =
√
2Ep â

out†
p,s |0⟩ . (232)

Using Eq. (231) and Eq. (227) on the l.h.s. of Eq. (223), we find

⟨ps1
1 ...p

sn
n , out|kr1

1 ...k
rm
m , in⟩ = (2Ek1

)
1
2 ⟨ps1

1 ...p
sn
n , out| âin†k1,r1

|kr2
2 ...k

rm
m , in⟩ . (233)

10If the field is not free, it cannot be expanded in terms of creation and annihilation operators as in Eq. (146), so Eq. (224)
does not hold. However, in a scattering process, we expect the theory to be a free theory if t → −∞ or t → ∞, namely
at times very distant from the instant in which the scattering takes place. For this reason, we can hypothesize that, as
t→ −∞,

lim
t→−∞

ψ(x) = Z
1
2 ψin(x) , (225)

where ψin(x) is a free fermion field and Z is a c-number, known as wave function renormalization. Similarly, as t→ ∞, we
have

lim
t→∞

ψ(x) = Z
1
2 ψout(x) , (226)

with ψout(x) again a free field.
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In the assumption that none of the momenta of the outgoing particles coincides with the momenta of the
ingoing ones (i.e. we assume to have no forward scattering), we write

⟨ps1
1 ...p

sn
n , out|kr1

1 ...k
rm
m , in⟩ = (2Ek1

)
1
2 ⟨ps1

1 ...p
sn
n , out|

(
âin†k1,r1

− âout†k1,r1

)
|kr2

2 ...k
rm
m , in⟩ . (234)

The operators can be rearranged in the following way

(2Ek1)
1
2

(
âin†k1,r1

− âout†k1,r1

)
= Z−

1
2

(
lim
t→∞

− lim
t→−∞

)∫
d3x1 ψ(x1)γ

0ur1(k1)e
−ik1x1

=− Z−
1
2

∫ ∞
−∞

dt
∂

∂t

∫
d3x1 e

−ik1x1ψ(x1)γ
0ur1(k1) , (235)

where we used that
lim
t→∞

f(t)− lim
t→−∞

f(t) =

∫ ∞
−∞

dtf ′(t) . (236)

Let’s focus on the integrand of Eq. (235):(
∂

∂t
e−ik1x1

)
ψ(x1)γ

0ur1(k1) + e−ik1x1

(
∂

∂t
ψ(x1)

)
γ0ur1(k1)

= ψ(x1)γ
0 ∂

∂t

(
e−ik1x1ur1(k1)

)
+ e−ik1x1

(
∂

∂t
ψ(x1)

)
γ0ur1(k1) . (237)

We know that e−ik1x1ur1(k1) is solution of the Dirac equation, with ur1(k1) that satisfies

(/k1 −m)ur1(k1) = 0 . (238)

Therefore,
0 =

(
i/∂x1

−m
)
e−ik1x1ur1(k1) =

(
iγ0∂t + iγi∂i −m

)
e−ik1x1ur1(k1) , (239)

from which it follows that

γ0∂te
−ik1x1ur1(k1) =

(
−γi∂i − im

)
e−ik1x1ur1(k1) . (240)

We con substitute the above r.h.s. into Eq. (237), getting

ψ(x1)
(
−γi∂i − im

)
e−ik1x1ur1(k1) +

(
∂tψ(x1)

)
γ0e−ik1x1ur1(k1) , (241)

and then integrate by parts as

ψ(x1)

(
γi
←
∂ i − im

)
e−ik1x1ur1(k1) +

(
∂tψ(x1)

)
γ0e−ik1x1ur1(k1)

=− iψ(x1)

(
i
←
/∂ x1

+m

)
e−ik1x1ur1(k1) . (242)

At this point we can plug Eq. (242) into Eq. (235), obtaining

(2Ek1)
1
2

(
âin†k1,r1

− âout†k1,r1

)
= iZ−

1
2

∫
d4x1 ψ(x1)

(
i
←
/∂ x1

+m

)
e−ik1x1ur1(k1) . (243)

In conclusion we have found that

⟨ps1
1 . . .psn

n , out|kr1
1 . . .krm

m , in⟩

= iZ−
1
2

∫
d4x1 ⟨ps1

1 . . .psn
n , out|ψ(x1) |kr2

2 . . .krm
m , in⟩

(
i
←
/∂ xi

+m

)
e−ik1x1ur1(k1) .

(244)
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Let’s consider now the object ⟨ps1
1 . . .psn

n , out|ψ(x1) |kr2
2 . . .krm

m , in⟩, which we rewrite as

⟨ps1
1 ...p

sn
n , out|ψ(x1) |kr2

2 ...k
rm
m , in⟩

=
(
2Ep1

) 1
2 ⟨ps2

2 ...p
sn
n , out| âoutp1,s1

ψ(x1) |kr2
2 ...k

rm
m , in⟩

=
(
2Ep1

) 1
2 ⟨ps2

2 ...p
sn
n , out|

(
âoutp1,s1

ψ(x1) + ψ(x1)â
in
p1,s1

)
|kr2

2 ...k
rm
m , in⟩

=
(
2Ep1

) 1
2 ⟨ps2

2 ...p
sn
n , out|T

[(
âoutp1,s1

− âinp1,s1

)
ψ(x1)

]
|kr2

2 ...k
rm
m , in⟩ . (245)

In the same way we derived Eq. (243), we can show that(
2Ep1

) 1
2

(
âoutp1,r1

− âinp1,r1

)
= iZ−

1
2

∫
d4y1u

s1(p1)e
ip1y1

(
−i/∂y1

+m
)
ψ(y1) . (246)

Plugging Eq. (246) into Eq. (245), we find

⟨ps1
1 ...p

sn
n , out|ψ(x1) |kr2

2 ...k
rm
m , in⟩

= iZ
1
2

∫
d4y1 u

s1(p1)e
ip1y1

(
−i/∂y1

+m
)
⟨ps1

1 ...p
sn
n , out|T

[
ψ(y1)ψ(x1)

]
|kr2

2 ...k
rm
m , in⟩ ,

(247)

that, inserted back into Eq. (244), gives

⟨ps1
1 ...p

sn
n , out|kr1

1 ...k
rm
m , in⟩

=
(
iZ−

1
2

)2 ∫
d4x1d

4y1 e
ip1y1−ik1x1us1(p1)

(
−i/∂y1

+m
)

× ⟨ps1
1 ...p

sn
n , out|T

[
ψ(y1)ψ(x1)

]
|kr2

2 ...k
rm
m , in⟩

(
i
←
/∂ xi

+m

)
e−ik1x1ur1(k1) .

(248)

Eq. (248) shows that we can remove momenta from both in or out states, using in or out creation and
annihilation operators, getting the expected values of time ordered products of fields. We can easily
generalize this result to the case of n outgoing and m incoming particles, getting

⟨ps1
1 ...p

sn
n , out|kr1

1 ...k
rm
m , in⟩

=
(
iZ−

1
2

)n+m
∫

d4x1...d
4xm d4y1...d

4yn e
i(p1y1+...+pnyn−k1x1−...−kmxm)

× us1(p1)
(
−i/∂y1

+m
)
... usn(pn)

(
−i/∂yn

+m
)
⟨0|T

[
ψ(y1)...ψ(yn)ψ(x1)...ψ(xm)

]
|0⟩

×
(
i
←
/∂ x1

+m

)
ur1(k1)...

(
i
←
/∂ xm

+m

)
urm(km) .

(249)

Eq. (249) can be further simplified integrating the derivatives by parts as

eipiyi
(
−i/∂yi

+m
)
⟨0|T

[
ψ(y1)...ψ(yn)ψ(x1)...ψ(xm)

]
|0⟩

=
[(
i/∂yi

+m
)
eipiyi

]
⟨0|T

[
ψ(y1)...ψ(yn)ψ(x1)...ψ(xm)

]
|0⟩

= eipiyi
(
− /pi +m

)
⟨0|T

[
ψ(y1)...ψ(yn)ψ(x1)...ψ(xm)

]
|0⟩ , (250)

and

⟨0|T
[
ψ(y1)...ψ(yn)ψ(x1)...ψ(xm)

]
|0⟩
(
i
←
/∂ xj

+m

)
e−ikjxj

= ⟨0|T
[
ψ(y1)...ψ(yn)ψ(x1)...ψ(xm)

]
|0⟩
(
−/kj +m

)
e−ikjxj . (251)

Substituting Eqs. (250) and (251) into Eq. (249) and using that the Fourier transform of the two points
function of the fermion field is

S̃(p) = iZ
1
2

(
/p+m

)
p2 −m2

, (252)
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we find precisely Eq. (223).
We point out that in this exercise we assumed that all the particles were fermions. The case with

antifermion is analogous and can be obtained using that√
2Ep b̂

†
p,s =

∫
d3x vs(p)γ0ψ(x)e−ipx ,√

2Ep b̂p,s =

∫
d3xψ(x)γ0vs(p)eipx .

(253)

□
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Exercise 30

Write down the Feynman rules for the theories defined by the following Lagrangians:

a) L1 =
1

2

(
∂µϕ∂

µϕ−M2ϕ2
)
+ ψ

(
i/∂ −m

)
ψ + gψψϕ , (254)

b) L2 = − 1

4
FµνF

µν + (Dµϕ)
∗
(Dµϕ)−m2ϕ∗ϕ , (255)

c) L3 = ψ1i/∂ψ1 + ψ2i/∂ψ2 +Gψ1γ
µψ2ψ2γµψ1 , (256)

d) L4 =− 1

4
FµνF

µν +
1

2
(∂µϕ∂

µϕ−m2
sϕ

2) + ψ(i/∂ −mf )ψ − g′ψγµψBµ +
g

4
ϕFµνF

µν , (257)

where in Eq. (254) ψ and ϕ are respectively a Dirac field and a real scalar field (Yukawa theory), in
Eq. (255) ϕ is a complex scalar field and Fµν is the Maxwell field strength tensor (scalar electrody-
namics), in Eq. (256) ψ1 and ψ2 are two Dirac fields (four-Fermi theory), and in Eq. (257) Fµν is
the Maxwell field strength tensor, ϕ is a real scalar field, ψ is a Dirac field and Bµ is an external
vector field (i.e. such that its free Lagrangian is nor part of the Lagrangian of the given theory).

Solution:

a) In order to write down the Feynman rules of the theory, we compute the leading order amplitude
for the process f(p1) + f(p2) → f(p3) + f(p4).11 To reach this goal, we have to compute〈
f(p3), f(p4)

∣∣ iT ∣∣f(p1), f(p2)〉 = 〈f(p3), f(p4)∣∣T [ei ∫ d4xLI(x)
] ∣∣f(p1), f(p2)〉

=
〈
f(p3), f(p4)

∣∣T[ ∞∑
n=0

1

n!

(∫
d4xLI(x)

)n
] ∣∣f(p1), f(p2)〉 , (258)

where LI = gψψϕ is the interaction part of the Lagrangian. The time ordering is removed applying
the Wick’s theorem to all pieces. The first non zero contribution to Eq. (258) comes from the term
with n = 2 because we have four particles in the external states (two in the initial state and two in
the final state), and thus we need four uncontracted fermion fields. This is achieved expanding at
second order (the interaction Lagrangian has two fermion fields) and contracting two fields by means
of the Wick’s theorem, so that we are left with exactly four uncontracted fields in the integral. So
we have〈

f(p3), f(p4)
∣∣T [ 1

2!
(ig)2

∫
d4x d4y ψ(x)ψ(x)ϕ(x) ψ(y)ψ(y)ϕ(y)

] ∣∣f(p1), f(p2)〉
=
〈
f(p3), f(p4)

∣∣ 1
2!
(ig)2

∫
d4x d4y : ψ(x)ψ(x)ϕ(x) ψ(y)ψ(y)ϕ(y) :

∣∣f(p1), f(p2)〉
=
〈
f(p3), f(p4)

∣∣ 1
2!
(ig)2

∫
d4x d4y D(x− y) : ψ(x)ψ(x) ψ(y)ψ(y) :

∣∣f(p1), f(p2)〉 , (259)

where D(x− y) is the x-space propagator of the scalar field and it is given by

D(x− y) = ⟨0|T [ϕ(x)ϕ(y)] |0⟩ =
∫

d4q

(2π)4
i

q2 −M2 + iϵ
e−iq(x−y) . (260)

Now, in Eq. (259) we have to take all the possible contractions of the fields with the external states.
For example, the contraction of ψ(x) with the fermion in the initial state gives

ψ(x) |f(p)⟩ =

∫
d3p′

(2π)3
1√
Ep′

∑
s′

âp′,s′u
s′(p′)e−ip

′x
√
2Epâ

†
p,s |0⟩ = e−ipxus(p) |0⟩ . (261)

11All the derivation that we are going to do in this exercise can be found with more details in An Introduction to Quantum
Field Theory, by M.E. Peskin and D.V. Schroeder (sections 4.6-4.7).
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All the other possible contractions give

ψ(x)
∣∣f(p)〉 = vs(p)e−ipx |0⟩ , (262)

⟨f(p)|ψ(x) = us(p)eipx ⟨0| , (263)

⟨f(p)|ψ(x) = vs(p)eipx ⟨0| . (264)

One of the possible contractions of the fields with the external particles that we can have is the
following

⟨f(p3), f(p4)| : ψ(x)ψ(x) ψ(y)ψ(y) :
∣∣f(p1), f(p2)〉 . (265)

Then we can also have

⟨f(p3), f(p4)| : ψ(x)ψ(x) ψ(y)ψ(y) :
∣∣f(p1), f(p2)〉 . (266)

These objects can be drawn diagrammatically as follows

p1

p2

p3

p4

−

p1 p3

p2 p4

= iMs − iMu . (267)

Observe that the two diagrams have a difference of a minus sign since in Eq. (266) we moved ψ(x)
of two spaces to the right, while ψ(x) must be moved of one space to the right, so we are left with
a minus sign. The reason why also ψ(x) must be moved is that all the external state contractions
must be done in the same order12: in Eq. (265) we applied to the final particles first ψ and then ψ.
However, in Eq. (266) the fields are placed in the opposite order. Therefore, in order to be consistent
with the choice done in Eq. (265), we have to exchange ψ(x) and ψ(y), getting an extra minus sign.
Other than these two contractions, we can have the cases in which x and y are exchanged. Since
they give contributions identical to Eqs. (265) and (266) (we have to exchange an even number of
fermion fields), we can just cancel the prefactor 1/2! in Eq. (259) and forget about such diagrams.
Considering just the contraction in Eq. (265) (for the other one the derivation is identical), we find〈

f(p3), f(p4)
∣∣ iT ∣∣f(p1), f(p2)〉

= (ig)2
∫

d4x d4y D(x− y) ei(p3+p4)x us3(p3)v
s4(p4)v

s2(p2)u
s1(p1)e

−i(p1+p2)y . (268)

Inserting Eq. (260) into Eq. (268) we obtain〈
f(p3), f(p4)

∣∣ iT ∣∣f(p1), f(p2)〉
= (ig)2

∫
d4q

(2π)4
d4x d4y

i

q2 −M2 + iϵ
ei(p3+p4−q)x us3(p3)v

s4(p4)v
s2(p2)u

s1(p1)e
−i(p1+p2−q)y

= (ig)2
∫

d4q

(2π)4
i

q2 −M2 + iϵ
us3(p3)v

s4(p4)v
s2(p2)u

s1(p1)

× (2π)4δ(4)(q − p1 − p2)(2π)
4δ(4)(q − p3 − p4)

= iM (p1, p2, p3, p4) (2π)
4δ(4)(p1 + p2 − p3 − p4) , (269)

12this is related to the fact that we can define |f(p1), f(p2)⟩ ∼ â†p1,s1
b̂†p2,s2

|0⟩ or |f(p1), f(p2)⟩ ∼ b̂†p2,s2
â†p1,s1

|0⟩. Both
definitions are possible but differ by a minus sign.
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with
iM (p1, p2, p3, p4) = (ig)2

i

q2 −M2 + iϵ
us3(p3)v

s4(p4)v
s2(p2)u

s1(p1) . (270)

In conclusion, we have found that the Feynman rules of the theory are

• External lines

p

= 1 ,

p

= 1 , (271)
p

= us(p) ,
p

= ūs(p) , (272)
p

= v̄s(p) ,
p

= vs(p) , (273)

• Propagators

q
=

i

q2 −M2 + iϵ
, scalar propagator , (274)

q
=

i(/q +m)

q2 −m2 + iϵ
, fermion propagator , (275)

• Vertex

= ig . (276)

b) In this case, using that the covariant derivative is defined as

Dµ = ∂µ + ieAµ , (277)

we can rewrite L2 as

L2 = −1

4
FµνF

µν + ∂µϕ∗∂µϕ−m2ϕ∗ϕ+ ie (Aµ∂µϕ
∗ϕ−Aµϕ

∗∂µϕ) + e2AµAµϕ
∗ϕ . (278)

The first three terms of Eq. (278) correspond to the kinetic terms of the photon and of the complex
scalars. Following the derivation of the previous point one finds

• External lines

p
= 1 ,

p
= 1 , (279)

µ
p

= ϵµ(p, λ) , µ
p

= ϵ∗µ(p, λ) , (280)

• Propagators

q
=

i

q2 −M2 + iϵ
, scalar propagator , (281)

µ νq
= − i

q2 + iϵ

(
gµν − (1− ξ)

qµqν
q2

)
, photon propagator . (282)

• Vertices
Regarding the vertices, the interaction Lagrangian is

L2,int = ie (Aµ∂µϕ
∗ϕ−Aµϕ

∗∂µϕ) + e2AµAµϕ
∗ϕ . (283)
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The second term gives an interaction between two photons and two scalars. It is easy to get
that the last term of Eq. (283) corresponds to the vertex

µ

ν

= 2ie2ηµν . (284)

The factor of 2 comes from the exchanging of the photon field. The first term of Eq. (283)
gives an interaction between two scalars and a photon. It reads

µ = ie(pµ1 − pµ2 ) . (285)

The momenta come from applying the derivative to the initial state scalars. Since we have
that

ϕ(x) |s(p)⟩ = e−ipx |0⟩ , (286)

ϕ∗(x) |s(p)⟩ = e−ipx |0⟩ , (287)

⟨s(p)|ϕ∗(x) = eipx ⟨0| , (288)

⟨s(p)|ϕ∗(x) = eipx ⟨0| , (289)

each derivative yields a factor of −ipµ. In the case where the scalar is in the outgoing state,
the factor becomes ipµ and so we have to invert the sign of the momentum.

c) In this case we have massless fermions coupled by an interaction Lagrangian of the form

LI = Gψ1γ
µψ2ψ2γµψ1

= Gψ1,c (γ
µ)cd ψ2,dψ2,b (γµ)ba ψ1,a ,

(290)

where in the last line we spelled out explicitly the Dirac indices. The external lines and the
propagators are the same as in point a), and are given by

• External lines

p
= us1(p) ,

p
= ūs1(p) , (291)

p
= v̄s1(p) ,

p
= vs1(p) , (292)

p
= us2(p) ,

p
= ūs2(p) , (293)

p
= v̄s2(p) ,

p
= vs2(p) , (294)

• Propagators

q
=

i/q

q2 + iϵ
, ψ1 propagator , (295)

q
=

i/q

q2 + iϵ
, ψ2 propagator , (296)

where black lines and red lines denote fermions of type 1 and type 2 respectively.
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• Vertices
Regarding the vertices, we can observe that the interaction Lagrangian in Eq.(290) is a 4-
fermion interaction, with two fermions of each type. The two possible vertices are

a

b

c

d

= iG (γµ)cd (γµ)ba , (297)

and
a

b

c

d

= iG (γµ)cb (γµ)da . (298)

d) Left to the reader.

□
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