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«Polish-born, French-educated Madame Curie, co-discover of radioactivity, she was a hero of science
until her hair fell out, her vomit and stool became filled with blood, and she was poisoned to death by her
own discovery. With a little hard work, I see no reason why that can’t also happen to any of you.»

- Sheldon Lee Cooper
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Exercise 1

in the discrete case.

Consider a system of N coupled harmonic oscillators with potential

N
V=> 5@ —a)?. 1)
1=1

Determine the normal coordinates and the eigenvectors of the potential, with boundary conditions
qo(t) = qn+1(t) = 0. Determine directly the equations of motion and the normal coordinates in the
continuum limit without using the Lagrangian, by taking the continuum limit of the result obtained

3

Solution:

The first request of Exercise [I] is to find the normal coordinates and the eigenvectors of the potential of
Eq. . Since the solution is rather cumbersome, we refer the reader to Sec. 2.3 of the textbook by David
Morin at the link https://scholar.harvard.edu/david-morin/waves, where an exhaustive discussion

on this topic was dedicated.

Let’s see how to solve the second part of the exercise. Since the kinetic energy of a system of N

coupled harmonic oscillators corresponds to

the Lagrangian reads

N
Z (2)

M\S
‘“l\)

L= i 5@ - Slata — )] - 3)

2

We use it to compute the Euler-Lagrange equation

as

4oL
dt Oqy,

_ oL
Oqx

1\3\2

>
>

@ﬂ
2

dt 0
9 2
g,

d 0L oL
22 22— 4
dtdgn  Oqr (4)
= mgy ,
ol (5)
(@1 — @) Z k(g — ) Giv1 e — Ok
im1

=k(qr — Gh—1) — K(Qrt1 — Q&)

from which we get straightforwardly the discrete equations of motion

Gr =

K

(k1 — ) — %(Qk — k1) - (6)

In order to move to the continuum limit, we start by promoting g to be a continuous parameter ¢(x),
where z is the position of the £*" node along the real axis. Then we define Az as the elongation of the
spring between the point g and that gr41, i.e.

qk —q(t,x),

qrt1 =gtz + Ax), (7)
qr—1 —q(t,x — Ax),


https://scholar.harvard.edu/david-morin/waves

according to which Eq. (@ becomesE|
K K
8?‘]@7 :17) = E [q(tv T+ AI) - q(ta I)] - E [Q(tv :E) - Q(t7 x — AI)] . (8)

Assuming ¢(t, z) smooth enough to have a well defined second derivative in z, we can expand the r.h.s. of
Eq. in series of Az <« 1 and get

3=

D2q(t, )| pnect = [q(t, x) + Azd.q(t, z) + %(Ax)zaiq(t, x) —q(t,z) + O(Am)g}
- % {q(tx) —q(t,x) — Axd.q(t,x) + %(A:E)Qﬁiq(t,x) —q(t,x) + O(Am)?’} 9)
= %(m)?agq(t, ) + O(Az)3.

Finally, by defining w. as

5 KAz e
= — < 10
e m/Ax  dm (10)
we find that Eq. @ can be rewritten in the continuum limit as
(07 —w2d2) q(t,x) = 0. (11)

This proves that ¢(¢, z) must satisfy the wave equation.
It remains only to understand whether w. of Eq. is well defined when Az — 0. In this regard,

we point out that:
e dm = m/Ax is the mass density of the new continuum system, which is clearly finite;

e if one cuts a spring in half, it doubles its stiffness. If we then cut the spring into many pieces,
each of length Az, we expect the stiffness to become proportional to k o< 1/Az, which diverges for
Az — 0. It follows that k. = kKAx must be finite in this limit.

Therefore we conclude stating that w, is finite and and well-defined in the limit Az — 0.

1We use the handy notation 8; = 8/t and 9, = 0/0x.



Exercise 2

Consider the Lagrangian density

L=0,6 0" —m?|g|” | (12)

where ¢(x) is a complex classical field. Derive the classical equations of motion and solve them using
the method of normal coordinates.

Solution:

In order to derive the classical equations of motion, we need to apply the Euler-Lagrange equations to
both ¢ and ¢*, i.e.

oL oL
Oy=r—— = =0,
“9(0,9) 9 "
oL oL (13)
Oy=r———=—— =0,
”8(8,@*) Op*
which, after computing the derivatives, yield
88“*—{- 2*:D+ 2 *:07
n ) m-o ( m )¢ (14)

80" +m*¢ = (O +m?)p = 0.

Thus, we find that ¢ (and, of course, ¢* as well) satisfies the so-called Klein—-Gordon equation (KG).
Now, let’s discuss how we can solve it. We write ¢(z) = ¢(t, ) in the Fourier space of z, i.e.,

3
ott.@) = [ 5 emolt.p). (15)

The KG equation becomes (recall that 9,0" = 9 — V?)

d3p

@ 70+ +m?)o(t.p) =0, (16)

(00" + m?)(t, ) = /

which implies
9io(t,p) = —Epo(t,p),  Ep=+/p*+m?. (17)
Notice that E,, is the relativistic energy of the field ¢. The general solution of Eq. reads
¢(t.p) = A(p) e """ + B(p) 5", (18)

where A(p) and B(p) are two distinct time-independent complex functions. Substituting this result into

Eq. , we obtain

3 ‘ ‘ . }
¢(t7 (B) — / (;171-1))3 (A(p) e~ iEpttipx + B(p) ezEpt-Hp»a:)

d3p —iEpt+ip-x iEpt—ip-a
~ ) (@) (A(p)e + B(—p) et

(19)

where in the second line we replaced the variable of integration as p — —p. At this point, we redefine
the functions A(p) and B(p) as follows:

a by,
A(p) = \/%7 B(—p) = 217E‘ ) (20)

where the prefactor 1/,/2E, will turn out to be a very useful choice of normalization in quantizing fields.
We point out that there is no specific reason to write by, instead of b, at this stage. However, in the



quantization of the fields, we will see that a, and b, will be promoted to operators acting on Hilbert

spaces, specifically b, — l;p and by, — B; So, we choose by, to represent a classical solution in a form
ready for quantization. Finally, we introduce the four-momentum p* defined as

P = (Ep,p), (21)

such that the time component reads p° = E,. This is equivalent to requiring p* to satisfy the equation
p? = (p*)? — p? = m?. Therefore, the general solution of the KG equation from Eq. corresponds to

a? . .
P (ape " 4 b3 e77) . (22)

QS(I)/(ZW)B /QEP =E,

Before concluding, we observe that a complex scalar field ¢ possesses two degrees of freedom and can
be expressed as a combination of two real scalar fields, ¢; and ¢s:

P1(x) + i (x) ¢1(z) — ida(z)

p(x) = 7 , o 9N(x) = 7 (23)
One can freely rewrite the Lagrangian density £(x) in terms of ¢ 2 as:
1 1 m?
L(x) = 50,$10" 61 + 50u620" $2 — = (67 + 63) , (24)
and then derive the equations of motion for ¢; 2. This task is left as an exercise for the reader.
O



Exercise 3

()

Solution:

()



Exercise 4

Show that requiring invariance of the metric upon Lorentz transformations
A AP = g (25)
and writing the infinitesimal transformation in terms of its generators J,,

A= %wpU(JpU)“V, (26)

v

completely fixes the explicit form of the generators, viewed as 4 x 4 Lorenz matrices (J,,)",, and

determine their explicit expression.

v

Solution:

Let A and w be an element of the Lorentz group and of the Lorentz algebra respectively. The Eq.
states that
A, =0, + ok, + O0(w?). (27)

Substituting this identity in Eq. we obtain

[, + W, + OW)] [, + WPy + OW?)]n"”
=1+ Wk, 4 WP, + O(w?)
— nup 4w P (’)(wz)
=",
from which we find
WHP = —wPH (29)

Therefore, a generic element of the Lorentz algebra in the vector representation (4 x 4 matrices) with both
high (or low) indices must be totally antisymmetric. This implies that the Lorentz algebra necessarily
has 6 generators, i.e.

0 o 5 ~
—a 0 6 €
Wpy = _B -5 0 0 ’ (30)
-y —€ —0 0
or, written in a more useful way as far as it concerns,
0 a B
b o uo _ | 0 -6 —e
wh, =n*we 35 0 -8 (31)
vy € 0 0
Basically w*, is
e symmetric in (0¢) and (¢0) indices, i.e. _
Wl =Wy, (32)
e antisymmetric in the spatial entries 4 '
wh = —w;. (33)

This completely fixes the Lorentz algebra. One can show that w; correspond to the Lorentz boosts K,
while the antisymmetric part w’; to rotations J*;.



Let’s now see how generators J#? appears in the theory. Since w,, is antisymmetric, we can derive
the following identity

1 1
wh, =nhPo% wpe = 51#‘”6% (Wpo — Wop) = 5%0(77“/’5”,, — M"Y (34)
We are thus free to introduce an antisymmetric tensor J*?, defined as
(Jpo-)ul/ = i(nup(sou - nHUé‘py) ’ (35)

such that )
? T\ L
w’ul/ = _§WPU(Jp )l v (36)

The definition of these “new” generators J”? completely determines the Lorentz algebra.



Exercise 5

Derive the Lorentz algebra, i.e. the commutation relations
T4, J0%) = (7 T g PIT T g (37)
a) using the explicit form of the generators found in Exercise

b) from the relation D(A)~*D(A)D(A) = D(A~'A’A), which holds for any Lorentz representa-
tion D(A) in the case of infinitesimal transformation (see Problem 1.11-b of V. Radovanovié’s
book Problem Book Quantum Field Theory).

Solution:

a) We proceed inserting the explicit expression of J* (see Eq. in Problem |4) inside Eq. .
After some algebraic manipulations, we obtain

[T, 79719 = (28— S Y107 — 7)1, — S ) (1 — )
= — |:gﬂagf’”5‘7,8 — ghaGIVEP 5 — gV PR 5 + g TP
-0 g"7 6" + 77pa77w5”5 + 07 NP6y — 770&77'/’)5“;3}
= =[P  (1720 = ) + (i (8% — 78"
— (=P (V6% = n7%6"5) — (—i)n"7 (00" 5 — 77‘“"5%)}
= Z‘(nALOJVp 4 PP JHT — ke JrT nvaJup)O‘ﬁ , (38)
which proves Eq. .

b) Let A’ be an infinitesimal Lorentz transformations A’ = 1+ w’ (w’ is a term of the Lorentz algebra)
and let D(A) be the representation of any infinitesimal Lorentz transformation A, i.e.

D(A)=1— %WWJW. (39)

Consider A” = A~'A’A. Using the expansion of A’, we find
A= ATAA =1+ A WA (40)

Notice that A~'w’A is the infinitesimal expansion of A”, therefore using Eq. we get

DAY =1+A'WA=1— (A 'WA), I =1~ %JW(A*)#PAUW;U. (41)

i
2
On the other hand, the identity D(A”) = D(A~'A’A) = D(A)~'D(A’)D(A) holds, and the r.h.s. cor-
responds to

D(A)'D(N)D(A) = D7(A) (1 - ;w’pgﬂ”’> D(A)=1-— %D*l(A)JPUD(A)w;J : (42)

So, comparing the above r.h.s. with that of Eq. , we ﬁncﬂ
DT A)JP7D(A) = (A7), P(ATH),7 M, (43)

2Here we use Eq. to write A%, = (A™1),°.

10



that is the transformation law of a second rank tensor. Replacing the expression of D(A) on the
Lh.s. and (A=1)#, = 6*, — wH, on the r.h.s., we obtain

T S S
<1+ Ew,uy‘]# ) J? (1 - iwo‘ﬁ‘] B) - (6Hp _wup) (5u - Wy )J# ’ (44)

which implies '
JP7 S [T, I = T = w0, P =, T (45)

We thus conclude thaﬁ

i

S LT T = = w0, P T — 0,7 T

= — W, 0PI —w,, 7 TP

__1 vp Juo up jvo 1 uo ypv vo gpp (46)

== 5 (@I w0 T) = 5 (@ TP )

1

== 5 (qH7 JVP 4 PP JHT — gt JVT _ v JHPY)

ie.
[TV JPT] = i (nhO JVP 4 PP JHRT — P JVT — o JHPY (47)
We have got Eq. .
([l

3In what follows we use the asymmetry of both wyy and JHY.

11



Exercise 6

()

Solution:

()

12




Exercise 7

Show that the lagrangian density

1

2
£ = 5 (061061 + 0,620 62) — "o (67 + 63) = A (63 + 63)° (48)

(§)-m0(2).

where R(#) is a rotation of an angle §. Determine the Noether current and charge.

is invariant under

Solution:
Consider the inverse of Eq. E|
<¢1> —R(0) (¢§> —  Gi=R0)y0, (50)
P2 o I
Since R(#) is a rotation matrix, it must be orthogonal, i.e.
RYO)R(O)=1, = R"(0)=R'(0), (51)
so we find
¢i = RT(0)i;0) = ¢ R(0);i . (52)
According to this writing, we obtain
Opi0" bi = 0,9 R;i(0)0" 6, i (0) = 0,050" ¢ Rji (0) Rii (6) = 030", (53)
where in the last step we used the Eq. to write
R(0);iR(0)r; = R(0);;R" ()it = i, - (54)
The same applies to the potential of L:
bt = S R(0) ;i 0, R(O)ki = 01, R(0);:RT (0)ire = & . (55)
In conclusion, we have shown that the transformation in Eq. is a symmetry of the Lagrangian in

Eq. .
In order to determine the Noether current and the Noether charge, we have to expand the rotation
matrix to first order in the parameter 6 as

o= (0 ) =3 )00 ) v

It follows that

¢:1 = ¢1 — 092, . 01 = ¢:1 —¢1=—0¢2, (57)
¢y = ¢2+ 001, 02 = ¢ — g2 = +0¢1 .
Therefore, from the definition of the Noether current we find
) oL
= 0 = 0"p1 591 + 0"P2 692 = 910" P2 — g2 01, (58)
0 (6M¢i)
while the Noether charge corresponds to
Q= [Caite) = [Ee (st aidte) - oalt.)di(t)] (59)

4Also the repeated Latin indices are to be intended summed.

13



Exercise 8

()

Solution:

()
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Exercise 9

()

Solution:

()
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Exercise 10

()

Solution:

()
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Exercise 11

Show that the momentum operator for a scalar quantum field, namely

pP= —/dBm b(t, )Vt ),

generates translations of the field operator, i.e.

[P,p(t,x)] =iVo(t,x).

(61)

Solution:

Let the momentum operator P be defined as in Eq. . Then the commutator [P, ¢(t, x)] reads

—is® (z—x’)
—_—~

[P, ¢(t, @) = — /dgm' {d’(t,w')[vﬁ(t’ﬂf')ﬁ(t’m)] +[o(t,2"), o(t, 2)] Vo(t, x')
=iV(t,z) — / B’ p(t,x") [V (t, '), d(t, x)] .
We thus need to compute [V'é(t, x'), ¢(t, z)]. Remember that the real scalar quantum field is

dBp 1 , ,
_ ~ —ipx ~T ipx
olt, ) _/(2w)3 2E, [ape™ """ +afe™"]

so its gradient corresponds to

3
vote) = [ 55

-

~ _—ipr _ ~T ipx
\/E [ape ape ] .

We use it to prove that [V'¢(t, x'), ¢ (¢, x)] = 0. We start from

d3 / ) -, ,
Vot ot.2)) = [ BT a7~ aly e’ o(t,2)

(27)3 (/2B

3./ 3 o
_ d°p’ d°p p [& /e—ip/:v —a /eip/m G e iPT _’_&T eipac]
(2m)3 (2m)% \fAE, Ep L ¥ P P P ’
where
5pp/(271')3 75171,/(271')3
—— —
foe—we _ At jip'e o —ipr st gipr| (s A1 pilpr—p'a’) it g —i(pz—p'a’)
Qpre —a,e? " ape +ane? | = [ap, a5 e — [y, ap] e

= 6 (27)7 [ei(prp’x’) | eilpe—p'a)]
Notice that the presence of dpp implies
i(pr —p'a’) = ~ip- (x — '),

since

o= Ep =V (P)2 +m? = VP> + m? = Ep = po.
Therefore we conclude that

d&Bp ip / , /
v ! = P | ip(z—a) —ip-(z—a') | _
[ ¢(t7m )’¢(t7w)] / (27'(')3 2Ep |:€ +€ :| O,

where the r.h.s. vanishes because the integrand is odd under the swap p — —p. It follows that

[Pv ¢(tv CC)} - iV¢(t, :13) :

17



Exercise 12

Derive the canonical commutation relation for the scalar field operator
[b(@), m(2')] = i6®) (x — 2) (71)

from the expression of the field operators ¢ and m in terms of creation and annihilation operators,
and the commutation relation satisfied by the latter.

Solution:

We want to prove the canonical commutation relation (71)), with ¢(x) = (0, ) and the same for 7 (z).
To do so, we simply use the explicit expressions of ¢(x) and 7 (x), i.e.

(2m)3 2F
, " (72)
d°p Ep —i
m(x) :/ (27)3 (—1) 7]3 [ape P®—af pw} J
to compute
[¢($) ﬂ_(xl)] _ 1/ dg‘p/ d3p Ep/ |:CL eip.m +&T e~ P 4 /eip. " dT e_ip/.m/ (73)
’ 2 (2r)? 2n)3\ B, P P v
Since
6pp/(27r)3 —6pp/(27r)3
dpeip-m + d;e_ip.m,dp/eip/'ml _ &L/e_ip,.ml} _ [dp,dl,/] ei(pm—p/.m/) + [di,,,&p] e—i(p-m—p/,m’) (74)
_ 5pp/(277)3 [eip-(ac—m') _’_e—ip.(m—w/)] 7
we get
Bla)ria) =5 | o 2t (amp [em o) 4 i o)
’ 2) @2n)3@2r)3\ B, ¥
) dgp ; ’ . ’
_t ip(z—a') | —ip(z—x >}
2 / (2r)3 [e te (75)
3
_ Z/ d°p eip~(:c—w')
(2m)?
=i6®) (x — '),
which gives exactly the result we are looking for.
|

18



Exercise 13

()

Solution:

()
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Exercise 14

Show that the spin operator for the electromagnetic field has the form

i ij d3p * * ~ A
st = ¢k / Bx EjA, = / e > [ej(p, Nei(p, X) — € (p, Ne; (p, )\')]a;Aap,)\/. (76)
AN =+

Solution:

Let A = A(f) be a rotation of an angle 6 around the Z axis. To prove Eq. , we start by computing
the conserved charge of A, (z). Remember that the conserved current reads

oL
= ——AA,, 7
I = 9(0,4,) (70
where A A, is defined according to
A=A, +0AA, . (78)
The rotation A acts on A,(x) as
A (z) = A, AY (x0) x = Azg, (79)
where
10 0 O
01 -0 0
[T
A, = 06 1 0f° (80)
00 0 O
so we can compute AA, as follows
" ’ v i g i v -
AB(z) = A" AY (z0) = (1— 5@ " ) A a), (81)
with
0 0 0 O
0 0 6 0
“or=10o —9 0 0 (82)
0 0 0 O
According to the relation J* = %eij k Jik and using the antisymmetry of J#7, Eq. reduces t
AM(z) = (1 —iwpJ?)" AY(A '), (83)

Now, said #* = (t,z,y, z) and zf = (¢, 20, Yo, 20), to the first order in 6 the spatial coordinates of z = Az
are given by
xr =z0— 0y,
y=0x0+yo, (84)
zZ=20,

so those of zg = A~!x are obtained by changing 6 in —@, that is

0AY 0A”

v —1 _ v _ — v —
AY(A™z) = AY(t,x + Oy, y — Oz, 2) = A¥(x) + o Oy oy

Oz . (85)

SNotice that J3 = 1 (J12 — J21) = Ji2,

20



Plugging this expression into Eq. (83)), we get (up to O(6?))

A () — AP(z) = (1 — 03" (A”(x) 8;” oy — 8{;4” ea:> _Ar()
= —if(J*)", A" (z) + 0(y0, — 20,) A" (x) . (86)

The first part of Eq. is a variation related to the internal transformations, while the second one is
related to the space-time transformations. Since A is a rotation around the Z axis, it follows that the
spin is the generator of the internal transformations and the orbital angular momentum of the external
ones. However in this exercise we are interested in the spin, so from now on we only focus on the first

part of Eq. , ie.

AAF = —i(J3)* AY(x). (87)
Therefore, we plug Eq. into Eq. , we use
oL

—— = —F" 88

0(0,4,) (88)

and then set u = 0 (we are interested in j°), which gives —F% = E¥ (with E° = 0 because F' = 0).
Putting everything together, we find

= E'AA; = E'(—i)(J?); A (2) (89)
where now %, j run only on spatial components 1,2,3. Writing explicitly J> as
3y 712y 12 2 1
(J )ij =(J )ij =i(nn 5 =N i) s (90)

we get -
0= p'A? - E?A' = SR A, (91)

which means that the conserved charge corresponds to
Q' =s®= /d% SIRE Ay . (92)
Generalizing this procedure to a generic rotation, one can easily show that
st = / dPx IR A (93)

Now we only need to substitute the explicit expressions of E; and A in the last equation. Remember
the definitions

a2 1 , .
A= [ G5 S [ Napae ™+ Vi Ae=0, w=lpl, O8)

(2m)3 /2w, =

and also the relations
V-A=0, [apnraf ] =210 (p—q)dan . (95)

Then, according to the identity E; = Fy; = 0gA; — 0j40 = OpA;, we can write E; as

1
E; =00A; = 8/ dp Z[ej b, )apke pf”—i—e(p,/\) ’eipz}

./2wp
= pr Z N)ap e P* + € (p, N)a L’Aei”x} .

21



At this point we plug both Egs. and into Eq. , getting
k kji 3. &p  fwp - —ipz | _* - ipz
s*=¢ d’xi enE\ 2 );E { —€;(p, Nap e +€;(p, Nay, ye }

dgp/ 1 P 1 sy
. / 3/ Z [ei (p/’ )‘/)dp',)\/eizp C+ 6: (p/7 /\l)dP',A'eZp ’ ]
(27T) 2wp’ N =4+ (97)

- 19 d3p 1 * ~ ~ * A ~
= 1€ ]k/ (2n)3 3 Z [€j (p, Nei(p, /\/)a;,xap«\’ — €j(p, Ne; (p, /\')ap,Aa;/\,
AN =%

N N . . . 0 N R _6; 0
+ €5 (p, Ne; (—p, /\’)a;/\aip’)\,em b — € (p, Nei(—p, N )ap ra_p e 2P t} .

The last two terms of the last line vanish. In fact, taking for instance the first of the two, we can rewrite
it as
e"ie;(p, Nef (—p, N)al \al oy
1 kji * * NaT At * I\ _* ~ T AT (98)
=3¢ (ej (P, Ne; (=p, N)ay, \al v — € (p, )€ (—p, )\)ap7>\,a_p7>\> ,
which is an odd function under p — —p and thus gives zero under integration.
We are then left with the first two terms of Eq. . Since they are both multiplied by €77, it is

convenient to antisymmetrize them,
. T3 d3p 1 * * A~ ~
sk = jeki /737 Z {(ej (p, Nei(p, N) — € (p, Nej(p, X)) a;)\ap’x
(2m)?2 £~
AN = (99)
— (&Nl (B, N) = (N (B X)) paith |

Now it is enough to relabel the summed indices in the last term of Eq. as A — ) and M — A, and
swap the order of the operators @ and a' (these operators must be taken inside normal ordering) to get

- 1% dS * * ~ A
=i [ B S (G0N N) € (b Ve V)] ] i (100)
AN =%

which is exactly Eq. .
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Exercise 15

Prove that if v* are N x N matrices satisfying the Clifford algebra
{77 =21y, (101)
where 1y is the N dimensional identity matrix, then the matrices

g

4
satisfy the Lorentz algebra, as given in problem [5, Eq. .

o = Ly, ") (102)

Solution:

Let v* be a set of N x N matrices satisfying the Clifford algebra
{7 =201y (103)
Consider the operator
o =Y, (104)
which we can rewrite as
. " p=—2¢"
_*

v Z v v v v v v Z v v
ot = 2 (" =) = (0T = =y YY) = S (0T =) (105)

In order to show that it satisfies the Lorentz algebra, we start by computing the commutator [o0#”, o*7].
Using the property

YAY =2 — A (106)
we obtain the following expression
Ao 0] = — [y — 2P — 7] = —[7*7", 7777
= — YY) (A
== 207" YT+ 207y = AP (77) (107)

= = 2Pty 4 2Ty = 2T AP 4 (Y)Y T APy
= — 2P+ 2Py = 2T P 2O T — AR T T

= = 20"PAtyT 4 2nTHA Py = 207 APt 4 2Py

At this point, by using the identity

29y = [T {0 = YT+ 20 A (108)
we find
Ao, o] = =" (Ih*, 7]+ 207) + 07 ([, 7" + 2077) — 07 (V75 "] + 20°7)
+ 0" (0,77 +297) (109)
i ] o e bl S T 1 S T e TN T B SR L )
that is

[c"",0?7] = '(77”"0’“’ +n7Ho"P — 7V otr — n“paw) ) (110)

This proves that o#¥ satisfies the Lorentz algebra (see Eq. of Problem .
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Exercise 16

()

Solution:

()
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Exercise 17

Write the Dirac equations satisfied by the left and right component of a generic Dirac field ¢, defined
as ¥y (x) = 1‘%1/1(9:) and Yg(z) = H%@/}(x) Determine explicitly the form of the 75 matrix in the
Weyl representation of the Dirac matrices.

Solution:

Consider the following definitions:

5 _ 1775 _ ~
ST = vile) = Pola), (111)
R= 5, Yr(r) = Pry(z) .
Notice that 1 1
VP = 50" =9") = (0" +9°) = Pyt (112)
since y#y® = —yPy#. Similarly, X R
’Y’LLPRZPL’}/‘”. (113)
Applying Pp and P to the Dirac equation, we find
0= PL(ii) — m)y(x) = PL’y“iﬁuw(Jj) —mPr(x) = idpr(x) — mip(x) (114)
and . . .
0 = Pr(id — m)y(x) = Pry"id,(x) — mPry(z) = idpr (z) — mp(z), (115)

which means that the Dirac equations satisfied by ¢, r are

{Zad)R(fE) = me(x) ’ (116)

i () = myr(z).

In Weyl (chiral) representation, y* matrices are defined as

02 ot
wo_
= (%5 (117)

with o# = (13,0) and 6# = (13, —0) , where o are the Pauli matrices. Therefore, by the definition of
~®%, we find

VY =iy =i (518263 012353) =1 (018203 _010;203> = <0122 (1)2) ;o (118)
which implies
(o) (%) (19)
O
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Exercise 18

Show that if the solutions of the Dirac equations are normalized as
u"(p)u’(p) =2md"™, (120)

then

W (p)u (p) = 2E, 67 (121)

Solution:

If ¢(x) is a plane-wane solution of the Dirac equation, i.e.

U(x) = u(p)e™ P, (122)
then the spinor u®(p) must satisfy the equation
(p—m)u(p)=0. (123)

In what follows we use the chiral representation

u*(p) = (ui(p)) : (124)

ug(p)

In order to solve Eq. (123)), we move to the rest frame of the particle (which is always possible in the
massive case m # 0), so that the equation becomes

(VEo—m)u®(0)=0 = (¥°=1)u’(0)=0, (125)
where we used that in the rest frame Eg = m. In the chiral representation, where v° reads

0, 1
0 _ 2 2
= (35 (126)

(& 5

u} (0) = u(0). (128)

After imposing Eq. (128)), we have to choose the normalization of the vectors u3(0) and u$(0). It is
common to adopt the convention

Eq. (125) becomes

which implies

up,(0) = up(0) = vm¢*, (129)
where £° with s = 1,2 are two orthonormal vectors of two components such that
gergr=6. (130)

In conclusion, we have

w©) =i (&) (131)

To come back to a generic frame, we need to apply a boost. We remind that the left and right components
of the Dirac field transform as

W = Appr, = exp [(—i@ -n)- %} v,

| 2 (132)
YR+ ARy = exp [(*19 +n)- 5] YR,
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where 1 and @ are the rapidity and the angle of the Lorentz transformation, respectively. Note that,
since we are applying a boost, we have 8 = 0, that is

YL Ay = e T 4y,

ne (133)
Yr— Apyr =€'2 Ygr.

At this point it is convenient to rewrite Eq. (133)) in terms of the matrices 15 and ¢;. For simplicity, we
consider a boost along the 2 axis
A = e~ "% = cosh glg — sinh gaz ,
n n (134)
= cosh 512 + sinh §oz .

noz

Ar=¢2

Using the definitions of cosh and sinh, it is straightforward to see that
1 — Uz . 1 z
AL:\/coshn—l-sinhn( 2 20 )—l— coshn—smhr](?;—(f) ’
1 z 1 - z
AR:\/coshn—i—sinhn(z;U) + coshn—sinhn( 2 20 ) .

The rapidity n has to be rewritten in terms of the parameter of the boost p*. In order to do so, we remind
that a Lorenz transformation of a generic 4-vector V* along the 2 axis isﬂ

(135)

VO = coshnV? + sinhnV?

. 136
V3 sinhnV° + coshnV?, (136)
which implies
E
coshnp=vy=—/|
m. (137)
sinhn = v = b
m
Pluggin Eq. (137) into Eq. (135)), we find
A = | Ep: + p? <12 —O’Z> n E,: —p* (12 +UZ>
m 2 m 2 ’
(138)

AR: Epz +pz 12+O’Z i Epz*pz 1270’2 .
V m 2 m 2

We can now apply the above Lorentz transformation to u*(0), i.e.

s S() ALe™  ([WVE»= +p7 (25%) + /By — p7 (232=)]¢r
u®(0) = u’(p) = m(/\;ﬁr) = ([\/W(lz;cfz) _’_m(lz;z)]fr) , (139)

where the two components £° are chosen as

¢h= (é) , &€= <(1)) : (140)

Taking the hermitian conjugate of Eq. (139)) and applying ~°, we obtain

rt N z (lato. . _ pz (Ll2—o=
T N = I

6We stress that we use the active point of view, i.e. we boost the system and not the reference.
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Finally, we can compute

(142)

Using the properties

12ﬂ:Uz 2 12:|:0'Z 12:|:O'Z 12:FO'Z
(=) -(%57) (52) () 049

at the end we get

) =2 VB - 07 (B ) 4 B - ) (B E) | € mamev. o

m m

This result is a direct consequence of the normalization we chose in Eq. (129). In the same way, starting
from Eq. (139) and computing u*f(p), we can show that

u"T (p)u®(p) = 2E,0"*%, (145)
that is again a consequence of our normalization choice in Eq. (129). In conclusion, we showed that if

Eq. (144)) holds, then Eq. (145) holds as well.
O
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Exercise 19

()

Solution:

()
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Exercise 20

Define creation and annihilation operators ap s, al

b5 ZA)p7S and Z)L ¢ for the Dirac field according to

d? 1 s ~ —ipz s 7 ipx
v = / (2ry 2E, 8;2 (4 @ipse™" + ()0}, ) (146)

where u°(p) and v®(p) are solution to the momentum-space Dirac equation, and determine in term
of these operators the expression of the Dirac Hamiltonian

H = /d% U(x) (i -V +m)y(x). (147)
Solution:
Consider the Dirac equation
(170 — m) (@) = (7°00 +7'0; — m) (x) = 0, (148)
which can be rewritten as
iy 0ot () = (—ivi&» +m)Y(z). (149)

Using that v -V = ~* 821‘ = ~'0;, we find

H = [ @ v @1 0 oia) = [ de vl @)aoe). (150)

The derivative of 1) with respect to the time reads

Dot () P)ip,se ™" + v (p)bh 77) | (151)

so we plug this expression into Eq. E, getting
d3 1 A . A
H=i / APz / 71)37 Z (uS*(p)&L,SeW + vsf(p)b,,,seﬂm)
30/

d ./ ~ .
o\ 22 (0 @i o ] )

3pd3p
/d3 oy Jz R
- u8*<p>vs (i By P4 1 () P
_ UST (p),Us' (pl)l;pﬁsi);,)yefl(lﬂfp )a:) )
Then we notice that
/d3w pilp—p)e _ ei(E,,—E;,)t/dgw —ilp—p)
—0 (153)
i(E E
= /p = B0 2126 (p — p') = (21)°6 P (p — p') |
through which we can rewrite H as
d3p 1 s s ~ ~ s s’ ~ 7 4
H = / T(p)u (p)a;sap’sf —u T(p)v (—p)ai,ysbip’s,e2 Ept

(152)

(154)



Finally, applying the relations

<
&

S
~—
:d’:
S
N~—

[

Usf(p)vs/(p) _ 2Ep555/ ,

u*(p)o* (=p) = v (p)u*(~p) = 0,
and using the normal ordering
: &vadi)’,s L= _di)’,sdpas ’
tbpsbly = —b1, bps,

we find

d3p
Y . .
H / (2n) E, S (a

The normal ordering in Eq. (158) is understood.
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Exercise 21

()

Solution:

()
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Exercise 22

First, determine the classical action for a one-dimensional free particle with fixed initial and final
conditions. Then determine explicitly the matrix element of the time-evolution operator

K(q,t';q,t) = (¢, ¥']q,t) = (¢'| e |g) | (159)

and show that is equal to the exponential of the classical action, times a factor of . DMT: Why
times a factor of i?

Solution:

a) Let H = p%/(2m) be the Hamiltonian of a one-dimensional free particle and let 7 = ¢ — . Then
the classical action reads

. ) . oo 2
(@ g t) = (e T |g) = / ap (| e~ T [p) (plg) = / dp(¢'lp) (pla) e~ T

— 00 — 00
o ipq’ ,—ipq 2 oo
e ¢ —igLT / @e*i%p%ﬂp(t]’*q)

= -— e
oo p\/27r V2 27

— ] i -
5T € 2T , (160)

where in the last line we used the formula for the Gaussian integral

/ dpe_“p2+bp+c = \/Feﬁ“. (161)
oo a

b) To determine Eq. (159)), we divide the time interval T =t — t' in N + 1 equal pieces of duration
5t =T/(N + 1) and then we introduce N complete sets of position eigenstates to get

— 00

N
(dt'la,1) = (H/d%) <QN+1|€7iH6t lan) (an| e ! lgn—1) - (@1 e ot |90) (162)
i=1
with boundary conditions qy+1 = ¢’ and ¢ = ¢. Using Eq. (160) with T +— &t we find

e m im (a2
(a7 ag) = [ g OO (163)

from which it follows that

N+1 N
m G N )2
(d,t]g,t) = (2m‘5t) ’ (H/d%) el3r 25=1(25+1—4;)" (164)
i=1

Let’s compute all the dg; integrals step by step. Defining ¢ = idt/m and using Eq. (161, the
integral over ¢; reads

/OO dg R i (2me) e
oo 5
Moving to the integral over go, still using Eq. (161]) we find
oo B 5 B R ) .
[ gyt et 200 gt (166)
oo 3
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If we iterate this process IV times, the integral over gy must be

> _lang1-an)? (an—a0)? N(2me) _lani1-10)?
qu e 2c e INc = m e 2(N+1)c

— 00

In conclusion, the integration over all the g; gives

N v (g41-95)° _ Gang1-a0)? 27TC 27TC _ Gang1-a0)?
I | in e i=1 2c = 2(N+1)c I | 2(N+1)c
e t+1 N + 1

Therefore, we can replace this result inside Eq. (| and get

t'| e [ M s
2(N+1)c T
(q-t'lg. ) %cN+1 omiT €

where in the last equality we used that

1 _ m _
(N+1)e i(N+1)dt

sk

We have thus obtained Eq.(161]).
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Exercise 23

()

Solution:

()
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Exercise 24

Compute, using the generating functional, the four-point function

G (z1, 22,23, 74) = (0] T[p(21)d(72)(w3)p(24)] 0) (171)

for a free real scalar field.

Solution:

The 4-point function in a free scalar real theory can be written as

1 4] ] 4] 4]
O Tanolm)oteole] ) = 5 | S es ey ey 2] -
where Z[J] is the generating functional of the Green’s functions defined as
21J] = Zyexp B [atadtys)pe - y)J(yﬂ | (173)

where we defined Zy = Z[J = 0]. Let’s compute the derivatives in Eq. (172)) one at the time. The first
derivative reads

Lz = Z0 [ateaty | 15 D - )t + 5@ DG - 0 55 ]

5J (1) 2 6J (1) 6J (1) (174)
= Z[J] /d4x J(x)D(x — x1),
where we used 5.(z)
Li —S@) (. 1
57(z;) 0Ny — xj) . (175)
For the other derivatives, we proceed in the same way. Defining D(x; — z;) = D;; we get
1) )
AVIEA a* D(y — a* D(z — Z[J) D 1
T 57y A0 = 201 [ @ 1Dty o) [ates@De ) + 21 D, (T6)
) 0 )
Z[J)=2[J) | d*2J(2)D(z —
57(x3) 57 (aa) 37y 27 = 2 }/ 2 J(z)D(z —x3)
X /d4y J(y)D(y — mg)/d4x J(x)D(x — x1)
+ Z[J] Da3 / d*zJ(x)D(x — 21) (177)
+ Z[J] Dlg/d4x J(x)D(x — x2)
+ Z[J] Dlg/d4mJ(x)D(x —x3),
0 90 0 9% p —Z[D Das + D13Day + D1oD (178)
57(x4) 3 (x3) 57 (22) 8 (1) o o|D1aD23 13024 12034,
where we set J = 0 in the last equation. The final result is then
G(x1,22,73,74) = D14Da3 + D13Dag + D12D34 . (179)
O
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Exercise 25

()

Solution:

()
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Exercise 26

Prove that if 6; are (complex) components of an N-dimensional vector of Grassmann numbers and
Bis an N x N matrix, then

N
<H / de,jdek) 0,07 e~ OmBrnln = (B71);; det B, (180)
k=1

where we assume the convention that the repeated indices are implicitly summed.

Solution:

Assume in what follows that ) and 6;* are two independent variables. Before proving Eq. (180)), we first
show that the following identity holds

N
(H /da;;dak> e OmBmnln — det B (181)
k=1

To do so, we start introducing two unitary matrices U and V such that

Bp =UBV (182)
is diagonal with non-negative numbers on the diagonaﬂ Then, we perform the change of variables
0= (V1 pnbn, 07 =0,,(U i (183)
through which we find
01 Buun = 0 (UTUBYV )08 = 05 (U)ot (B)ip(V gl = 00 (Bo)iptly = bi 676}, (184)

where we used (Bp )0, = b 0). Relabelling the index [ as n, we can rewrite the Lh.s of Eq. (181) as

N . . N
d6:do 07, Brnb _ _ ~ L / g ) oo 00 -
(IE/ * k) ‘ det U det V' 1};[1 kA0 ) € , (185)

where det U and det V' come from the Jacobian of the change of the variables of integration. At this point
we write the exponential in Eq. (185]) as a power series of b, 6/*6.,, i.e.

N N o ,
LI g\ obuore, _ L1 e (—by 050!,)*
iy (L) 0 = gty (I foman ) SERER5 0

k=1 s=0

Consider first the case N = 1. We simply use the properties
(0)2 = (0")? =0, /de’*de’ 00" =1, /de’*de’ =0, (187)

to show that

1% 39l —b0"* 0" _ 1% 1p/ = (7b9/*0/)s o 1% 10/ = (b@’@’*)s
/dadee 7/d9dé)sz dedng

s=0 s=0

= /d9’*d9’(1 +b6'0"™ + higher powers of 0’6" that vanish) (188)

= b/d@’*d&’&'&’* =0,

7A generic matrix (it can even be rectangular) can always be diagonalized by means of two unitary matrices into a
diagonal non-negative matrix. See https://en.wikipedia.org/wiki/Singular_value_decomposition|for more details.
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which satisfies the Eq. . Moving to the case of N generic, in analogy with the case N = 1 we see
that the only non-vanishing contribution on the r.h.s. of Eq. can come from the power s = N, since
only the latter produces a term of the kind 6161"...00x which does not vanish once integrated. In fact,
from N = 1 we see that each 60/ pair must appear raised exactly to the power of 1, otherwise the
integrals vanish. Therefore, using the multinomial theorem to read the explicit formula of (—b,, 620! )N

we find®]

b 0/*9/
% H bj 007" 4 contributions that vanish once integrated, (189)

through which we finally obtain

N
(I faman) o= it (1

) Chaze)
e;d9;>( s

H::]Z

k=1
det U de

/ d9’*d9’> [T 00505

V£3 ! I n/*
det U det % H i / A0l 403, 0101

= ———— =detB. (190)
e
This proves Eq. (181).

Now we have all the instruments to compute the integral of Eq. (180)). First, we apply the change of
coordinates of Eq. (183)), rewriting the Lh.s. of the Eq. (180) (we call it I;; for convenience) as

N
. 11
L= * % =05 Bunn _ L / e 1 e o1
ij <kl:[1/d0kd9k> 0,07 T ( A6} A6}, | VU, 0,60 (191)

Then we write the exponential as in Eq. (186]), i.e.

Ii; = H/d9 *d0), | VaUy, 0,0 Z b 0/*9/) . (192)
J detU detV

This time the non-vanishing contribution comes from the power s = N — 1. In fact, since the integrals
do not vanish only if the integrand is a term of the kind 61 607*...0% 0%, and since we already have an extra
0,0, pair, then we need precisely other N —1 6;,0," pairs to get 07607"...0 0. Therefore, setting s = N —1
and using again the multinomial theorem, we find

(—b 0=’ )Nfl N N
ﬁ = Z H b: 0,0;" + contributions that vanish once integrated . (193)
’ r=1t#r

In other words, the contribution we are interested in has the form
ba 0505 30505 ...bn OO + 10107 D30505 .. .bNONON + -+ + b10107 620505 .o 10N _1 0% . (194)
Putting this expression in place of the exponential in Eq. (192)), we find

1 1 /% /% /*
Iij = detUdetV(H/ a6y, d9k> VU, 6;0" ZHbt 19, (195)

r=1t#r

8Remember that 6.*0!, = —0.,60%*.
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Notice that the condition 6,0, = 0;,0;¢;* must hold, otherwise a pair remains “unmatched” and the
corresponding integral vanishes. It follows that

N
Lij = detUdetV (H/de d9/> VUi 6,61 ZHWQG?*

r=1t#r

detUdetV <H/d0 de’) bV Uu 919’*21_[9 o (196)

r=1t#r

Finally, we point out that the integrals vanish if r # [, because in that case we would have a missing
0’0" pair and another pair raised to the power of 2. In other words, we have to multiply to every piece
of Eq. (194) the missing couple of §’¢"*. So, also by noticing that 1/b; = (Bp")u, we find

detBD , _1 o
I = ‘
Y7 detU det V <H/d9 d¢ ) By )uUy; 0107 .04 05

— det B (H [ aoicas; 9@9;:) Via(By )ully
— N———
=l =B i
= (B™);;det B, (197)

where we used
By'=UBV)'=v'BlU! = VBy'U=B""'. (198)

We have thus obtained Eq. (180).
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Exercise 27

Compute explictly the two-point function for a Dirac field
G® (2, 2) = (0] Tlvpa(2) Py (y)] |0) | (199)

by expressing the field in terms of creation and annihilation operators and using the anticommutation
relations.

Solution:

We start by writing the the two-point function as

GP(x,y) = (0| Tlpa(x)y ()] 0)
=0(2% —y") (01 ¢a(2)¥y(y) 0) — O (y° — 2%) (0] ¥y (y)¢ba(x) |0) ,

where we express the fields in terms of creation and annihilation operators as

bal) = /

y(z) = / p \/ﬁ Z ( p,s0° (D)™ T + &L,sﬂs (p)eipm) )

(200)

\/ﬁ Z (a’p,su e P 4 EI},S/US (p)eipl-) s

(201)

with

1
fermion : ap.s|0) , de =——|p,s),
s 10) 0) = = P9

1
\/E ‘p,8> :

(202)

antifermion : 13,,73 |0) , ZAJLS |0) =

We first consider the term with z° > 3°. In this case we have

3 3.4/
(0] ()T (y) 0) = / ip d ﬁ% ﬁz (O] (i (P + 8} i (p)e™)

XZ( -~ svb Zpy—i—a , ,ub(p)e”’y) |0)

d3p d3 ' 1 s —s’ —ipz _ip’ ~ ~
- G S (B e Oy 10)

2m)3 (2m)3 \/AE,Ep
d3 d3 !
:/ ,/4E By Z

where in the last step we used the relations in Eq. (202)). Remember that the physical states satisfy the
condition

—ipzip'y (p,slp’, s’y , (203)

(p,slp’.s") = 2Ep(2m)°6® (p — p)bs (204)
se we can rewrite (0], (z)1,(y) |0) as
— d*p d3p’ 2E,(2m)%0)( owin
O 0 = [ B CE 4 >0 i ) e

= (¢+m)ab

41



Sy AN
) (27)32E,

. d°p 1 _.
= (s +m)ab / e P (205)
(27m)3 2E,

P+ m)ap e~ tr(@—y)

3

As for the case z¥ < ¢°, it can be computed in an analogous way as z° > y". The result reads

3
(01T 5)0a0) [0) =~ + m)as [ (;1;)“2;<> | (206)

Therefore, combining the results of Eqgs. (205) and (206)), we obtain

3
(0 Tba () ()] 0) = (idh, +m)as / (3753 2}{3}) [0~ 4)e 5= 4 0y — a0)er—)]
d*p i

= (; —ip(z—y) 207
(Z@erm)ab/ (2m) p? — m? el (207)

:/ dlp _ilp+m) e~ w(z—y)
( )

2m)4 p2 — m? + ie

that is the final result of the problem. The only non-trivial step is how to move from the first to the
second line of Eq. (207). Let’s show they are the same. First, we rewrite the second line as

4 ; 3 oo 0 ;
/ d’p ! e~ ip(z—y) :/dipeip(m*y)/ " i i@y (208)
(2m)% p?2 — m?2 + ie (2m)3 Coo 2m (p°)% — E2 +ic

Regarding the integral over p°, the integrand has two poles in p° = +E,(1 - ie/QEZ?,)7 So we can use the
residue theorem to compute it. Specifically, we close the integration path below the x axis if 2z° > y° and
above the z axis if y° > z°. For instance, in the case z° > " we get

oo 0 : : —iEp(2®—y° —iEp(2®—y°
di;.eiipo(xoiyo) _ L(—Qwi)e p(z"—y") _e p(z"—y") . (209)
Coo 2m (p°)% — E2 +ic 27 2E, 2E,

Doing the same also for y° > 2, one easily obtains the first line of Eq. (207).

Clearly the method just proposed requires knowing the second line of Eq. a priori. We show
below a second approach that allows us to obtain the second line starting from the first. To do so, it is
useful to introduce an integral representation for the Heaviside function

o(t) = z‘/m do e (210)

-
oo 2T w + i€

through which we find

3 3 oo —i(w+p°) (2°—y°)+ip-(x—
/dp 1 @(xofyO)efoy):i/dP 1 / dw e—iw+p") (@ =y )+ip-(2—y)

(27)3 2E, (2m)3 2E, J_. 21 W+ ie (1)
L[ dBp P @Y o g emi@@’—y”)
_Z/(27T)3 2E, /_Oogcb—po—&—ie
and’]
3 3 —ip-(z— oo g~ iw(x®—y°
[ 22 oy [ Fp e < )
(2m)3 2E, (2m)3  2E, oo 2w — Y i€ (212)

J dip cira—v) [ i)
=—i —_— —_
(2m)3 2B, J_o 2m @+ p0 —ie

91In the second line of the following equation, we send & — —® and p — —p.
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It follows that (recall that p° = E,)

dBp 1 o o
/(QW)SQEP[@(xO_yO)e ( y)+@(y0_$o)ep( v] _

/ d3p ip-(x—y) /OO d@ e_m(xo_yo)
=i | —=e —_—

(2m)3 0o 2m 02 — E2 +ic’

(213)

At this point, we define the momentum p* = (©,p) and, since the latter is and integrated variable, we
relabel it as p* — p*. We thus conclude that

d*p 1 0 0\ ,—ip(z—y) 0 0 oip(z—y) dp ‘ —ip(z=y)
/(277)32Ep o6 =) +0( —a)ere] - / @m)F p? —m? Fie” e

which proves the step used in Eq. (207]).
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Exercise 28

Prove that if one defines

ap(t) =i \d/sﬁ iwi-pe)y, b(t, ), (215)
where £, g = f(di9) — (9, f)g, then
d3 ) .
d(t, @) = / Wip\/%[wmap(t)wma;(t) , (216)

with p* = (w, p).

Solution:

In order to prove that Eq. (216)) holds, we rewrite explicitly its r.h.s. to show that it is equivalent to
@(t,z). To do so, we first compute e~ P%a,(t) as

R d Yy N . oL
—ipxT i(wt—p-y)—ipx _ ipx i(wt—p-y)
e ap(t) \/7 [ at¢(t7 y) € (ate )¢(t7 $>:|
— i(wt—p-y)—ipz .
i / L [0(t.9) — wo(t,v)] (217)
&’y ot (@) ;
=i [ SLer e [aoy) —iwolt.y)].
where
iwt—p-y) —ipr=i(wt—p-y)—i(wt—p z)=ip- (x—y), (218)
and its complex conjugate as
, N By e .
ePral (1) = (e ay) = —i \/7% 7@ (9,0t ) + iwolt, )] (219)

Then, we substitute these expressions inside the r.h.s. of the Eq. (216)), getting

[

_ / - 3W/ v [Bro(t,y) (7= — eimew) (220)
—iwe(t,y) (em(w—y) + e—w(w—y)) } .

Finally, since

3
/(dfpem,(m,y) _ / (d P —iv(@-y) _ §6)(z _y), (221)

2m)3

we obtain
/ (27323% [Py (1) + €7 af (1)
=i [ S2 [0t 9) (194 =9) - 82%e=5]) - iwolt,) (6@~ ) + 50w - w) | (22)
=i [ S¥200t.9)09 @~ y) = olt.3).

which proves the Eq. (216).
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Exercise 29

Prove the reduction formula for a fermion field, namely, for incoming and outgoing particles,
(pit...pir, out|kit ... kym, in)
— /d4CL‘1...d4xm d4y1...d4yn etPry1t Apryn—k1z1— . —kmTm)

X T (py) S~ (Y1) w(p WS () O T [$(y1)-- 4 (yn) (1) (2n)] 0)
x 87 a1 )u" (k). S (@ )u"™ (k)

and u <> v, W <> T, k +> —k for outgoing or incoming antiparticles respectively (an outgoing particle
is like an incoming antiparticle and conversely).

(223)

Solution:

We begin by observing that the expansion of a free fermion field ¢(x) in terms of creation and annihilation
operators af, ; and dp s (see Eq. (146)) can be inverted to give

V2Ep &;S = /d3x (x)y'u® (p)e” P,

(224)
\/E&p,s = /dBﬂ? Vp(z)as (p)e™” .
This means that the free operators are defined ad'|
V2Epa A;ﬁg 773 , lim [ d®z(x)yu®(p)e P, (227)
——00
\/ ”n — 7% 7 3 0 —s ipx
2EP p,s Zz t—I:I—HOO d Ty ¢($)U (p)e ’ (228)
B, aot = Z7% tim | dBaP(2)y ud (p)e~ ", (229)
t—o0
VIt =27 i [ el ). (230)

We remind that one-particle initial of final states are defined as

p",in) = 2B, a2t [0) (231)
[p*. out) = /2B, agt o) . (22)

Using Eq. (231) and Eq. (227) on the Lh.s. of Eq. (223]), we find

(pi*...pyr, out|kyt ... ky, in) = (2Ek1)%< pfl",out|a};ljr |[k52... k™ in) . (233)

101f the field is not free, it cannot be expanded in terms of creation and annihilation operators as in Eq. (146)), so Eq. (224)
does not hold. However, in a scattering process, we expect the theory to be a free theory if t — —oo or t — co, namely
at times very distant from the instant in which the scattering takes place. For this reason, we can hypothesize that, as
t — —o0,

dim () = Z5 (@), (225)

where iy () is a free fermion field and Z is a c-number, known as wave function renormalization. Similarly, as t — oo, we
have

Jim (2) = 22 Yout (@), (226)

with ¥out(z) again a free field.
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In the assumption that none of the momenta of the outgoing particles coincides with the momenta of the
ingoing ones (i.e. we assume to have no forward scattering), we write

=

(py' ... pyr out|kl .. k7 in) = (2B, )? (p' ... pirout| (ap —apl ) [kb?... klrin) . (234)

The operators can be rearranged in the following way

(2B,)* (a},, —apl, ) =77 (hm -, Jim ) [ et e

t—o0 t——o0

—_ 7 / dt % /d3x1 e R e (e )y 0u (ky) (235)
where we used that -
. . _ ’
Jim )= Jim ()= [ atr). (236)

Let’s focus on the integrand of Eq. (235]):
S )y (k) + 0 () ) 2P ()
ot 1 1 priaCal 1
_ ) 4 4 0—
= By (T () + e (at¢<m1>) 2O () (237)

We know that e~**1%1y1 (k) is solution of the Dirac equation, with u"* (k1) that satisfies

(Fy —m)u" (k1) =0. (238)
Therefore, ' 4 ,
0= (z(?ml — m) e~z m (k1) = (mo@t +iv'0; — m) e~y (k1), (239)
from which it follows that
'yoate_ik””‘u“ (kl) = (_'yi(?i — zm) e_iklxlu“ (kl) . (240)

We con substitute the above r.h.s. into Eq. (237)), getting
P(z1) (—7'9; — im) e~ thiTiy (k) + (Otp(21)) e Ry (k) (241)

and then integrate by parts as

(1) <7151 - im) e” My (ky) + (0 (1)) A le T (k)

—
= —i(x1) (z@ml + m) e~ ki@ (k). (242)
At this point we can plug Eq. (242) into Eq. (235]), obtaining
. JR— ~ .
(2B, )? (a};’jﬁ - a,‘;jfil) —iZ"2 / d*zy P(xy) <i&9$1 +m) e~ Ty (k). (243)

In conclusion we have found that

(pit...por out|klt ...k, in)
-

=iz"% [ d%ay (p ... pSr,out| P ra gt [ Cikiza, (244)
= (P . i out| Y(a) k52 .. Kk, in) (id,, +m ) e u(ky) .
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Let’s consider now the object (pi'...pS", out| ¥ (zy)|k5? ... k", in), which we rewrite as
(pi'...pp, out| P(x1) [ky>... ko, in)
= (2Ep,)? (p32... Py out| 6%, ) [k kg, in)
= (2B,,)* (3 piy out] (a9, V) + Blan)als ) K5 Ky in)
= (2B,,)7 (p§...pi, out| T [(ag,, —ain ) Blwn)] k5. ki im) (245)

In the same way we derived Eq. (243]), we can show that
1 . 1 ) )
) (i3 —5,0) =127 [ e (id, +m)vion). (246)

Plugging Eq. (246) into Eq. (245)), we find

(p3...p5r out|(x1) |ky2... kI in)

N YR < o s = e (247)
=iZ> /d Y@ (py)e™ (—idy, +m) (pi*...pyy, out| T [¢(y1)(x1)] k5. ey, in)
that, inserted back into Eq. , gives
(pit...pyr out|k]t ...k in)
- (Z'Z—%)2 /d4x1d4y1 eiplyl—ikll‘lﬂsl(pl) (—Z'(?yl n m) (248)

" g 3 ‘<_ —ikix1,, T
x (pit...plr,out| T [¢(y1)d(z1)] k5. ki, in) (zaxl +m) e~ hTiy (k).

Eq. (248]) shows that we can remove momenta from both in or out states, using in or out creation and
annihilation operators, getting the expected values of time ordered products of fields. We can easily
generalize this result to the case of n outgoing and m incoming particles, getting

(pit...pJr, out|ki ... kym in)

= (@'Z_%>n+m/d4x1...d4xmd4y1...d4yn e P1y1t A Pnyn —k121 = =k T
x @ (py) (=idy, +m) .7 (p,) (—idy, +m) (O T [¢(y1)--1(yn)P(21)-. (2] |0)
X (zgzl + m> u (kq)... z‘%m + m) u'm (k) -

(249)

Eq. (249) can be further simplified integrating the derivatives by parts as

é”%%%+mﬂ%ﬂwmwwwwmmwymhm

= [(idy, +m) e OIT [$(y2)--4(yn) (1) (wm)] [0)
= P (=i +m) (O T [$(y1)---th(ya) ¥ (1) D(wm)] [0) (250)

and
(O] T [¢ (1) (yn)¥(21)... 0 (2m)] |0) (zg% —|—m> ok

= (O] T [ (y1)-(yn) i (1) ... (@m)] 0) (=K, +m) e= % . (251)

Substituting Eqgs. (250) and (251)) into Eq. (249)) and using that the Fourier transform of the two points
function of the fermion field is ( )

5 ilpt+m

S(p) =iZ> PZ—m?’ (252)
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we find precisely Eq. (223).
We point out that in this exercise we assumed that all the particles were fermions. The case with
antifermion is analogous and can be obtained using that

V2ER bl = / Pz v®(p)y P (x)e P,

) | (253)
V2Epbp s = / Bz E(m)’yovs (p)e'?”.
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Exercise 30

Write down the Feynman rules for the theories defined by the following Lagrangians:

8) Ly =3 (0u00"6 — M) +7 (i~ m) o + g0 (254)
b) Lo= — LELFM (D) (DF6) ~m?6"s, (255)
c) L3 =yidy + aids + Gy Yoty (256)
Q) La=— TFwF™ + (0,000 — m36?) + U — mg)b — Ty Y B, + SoFW F, (257)

where in Eq. 1 and ¢ are respectively a Dirac field and a real scalar field (Yukawa theory), in
Eq. ¢ is a complex scalar field and F*” is the Maxwell field strength tensor (scalar electrody-
namics), in Eq. 11 and 9 are two Dirac fields (four-Fermi theory), and in Eq. FH s
the Maxwell field strength tensor, ¢ is a real scalar field, v is a Dirac field and B,, is an external
vector field (i.e. such that its free Lagrangian is nor part of the Lagrangian of the given theory).

Solution:

a) In order to write down the Feynman rules of the theory, we compute the leading order amplitude
for the process f(p1) + f(p2) — f(p3) + f(p4) To reach this goal, we have to compute

(f(p3), F(pa)| iT | f(p1), f(p2)) = (f(p3), f(pa \T[ "fd‘l’”"(”)} | (1), f(p2))

o0

> ; (/d‘*x& ) ] |£(p1), F(p2)) , (258)

n=0

= <f(P3)j(P4)‘ T

where £; = gyn)¢ is the interaction part of the Lagrangian. The time ordering is removed applying
the Wick’s theorem to all pieces. The first non zero contribution to Eq. comes from the term
with n = 2 because we have four particles in the external states (two in the initial state and two in
the final state), and thus we need four uncontracted fermion fields. This is achieved expanding at
second order (the interaction Lagrangian has two fermion fields) and contracting two fields by means
of the Wick’s theorem, so that we are left with exactly four uncontracted fields in the integral. So
we have

() Foo| T | 30000 [ ate 'y Bl)ita)ote) Bt 1), Fo)

|

= (Fl0). T00)] 53(09)° [ d' dy  Gla)u()o(o) D)v o) : [ £ Tp2))
= (F0). T00)] 53009)° [ d'z dty Do — ) : B@)o(o) D)lo) s [Fo1), o)) (259)

where D(x — y) is the z-space propagator of the scalar field and it is given by

4 )
D(e =) = O Tl 0) = [ 54—

Now, in Eq. (259)) we have to take all the possible contractions of the fields with the external states.
For example, the contraction of w(x) with the fermion in the initial state gives

1 3./ .
b)) = / ¢p NS o (p)e= %%\ /2Bpal  0) = e P us(p) 0) . (261)

e~ia@—y) (260)

11 All the derivation that we are going to do in this exercise can be found with more details in An Introduction to Quantum
Field Theory, by M.E. Peskin and D.V. Schroeder (sections 4.6-4.7).
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All the other possible contractions give

) [F0) =7 m)e " |0}, (262)
(fp)[o(x) =a"(p)e'™” (0] , (263)
(f)(x) = v*(p)e™* (0] . (264)
One of the possible contractions of the fields with the external particles that we can have is the
following
o - | — 1
(F(p3), F(pa)| : ¥(@)o (@) ¥(y)e(y) « | f (1), F(p2)) - (265)
Then we can also have
’ . T 7% — 1
(f(ps), F(pa) = d(@)(@) P(y)¥(y) « | f(pr), Fp2)) - (266)

These objects can be drawn diagrammatically as follows

D1 p3
p1 ps3 \\/
> ,,,,, < - ! = iMy—iM,. (267)
b2 P4

D2 P4

Observe that the two diagrams have a difference of a minus sign since in Eq. we moved ) (z)
of two spaces to the right, while ¢)(z) must be moved of one space to the right, so we are left with
a minus sign. The reason why also ¢ (x) must be moved is that all the external state contractions
must be done in the same orde in Eq. we applied to the final particles first ¢ and then 1.
However, in Eq. the fields are placed in the opposite order. Therefore, in order to be consistent
with the choice done in Eq. , we have to exchange v(x) and 9 (y), getting an extra minus sign.
Other than these two contractions, we can have the cases in which x and y are exchanged. Since
they give contributions identical to Egs. and (we have to exchange an even number of
fermion fields), we can just cancel the prefactor 1/2! in Eq. and forget about such diagrams.
Considering just the contraction in Eq. (for the other one the derivation is identical), we find

(f(p3), f(pa)|iT | f(p1), f(p2))
= (ig)? / d'z d'y D(z —y) &' PFPITw% (pg)v™t (py )0 (py)u™ (py Je P72V (268)
Inserting Eq. into Eq. we obtain
(f(ps), f(pa)| 4T | f(p1), f(p2))

. d4q i i —q)x 578 s =8 s —1 —
= (29)2/ d*z dty m etPstra—az 3(p3) vt (py)T°2 (po)u® (py e (p1+pP2—q)y

)
4 1
= (10 [ G ) ()T R ()

X (27T)45(4)(q — D1 —p2)(2ﬂ)45(4) (¢ —ps — pa)
= iM (p1,p2,ps,pa) (27)*6Y (p1 + p2 — p3 — pa) , (269)

12this is related to the fact that we can define |f(p1), f(p2)) ~ &L1»S1i’;2752 |0) or |f(p1), f(p2)) ~ 131,2,52 &;r;l,sl |0). Both
definitions are possible but differ by a minus sign.
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with )

1 _
I S
q% — M? + e

In conclusion, we have found that the Feynman rules of the theory are

iM (p1,pa, p3,pa) = (ig)? %3 (p3)0™ (p4) T (po)u” (py) -

¢ External lines

p p
******* .:17 - ------ :15
—>—0 :ué(p)v —p — — 76(1))’
e e =7, - % =v(p),
e Propagators
4 = ! scalar propagator
R *= APt propagator ,
q i(g +m) formi
— > o ermion propagator ,

e Vertex

b) In this case, using that the covariant derivative is defined as
D, =0,+ieA,,

we can rewrite Lo as

Lo = —EF/WF‘“’ + "% 0,0 — m*¢*p +ie (AF0, " — A d ") + 2 AF AL ).

4

(270)

(271)
(272)

(273)

(274)

(275)

(276)

(277)

(278)

The first three terms of Eq. (278)) correspond to the kinetic terms of the photon and of the complex

scalars. Following the derivation of the previous point one finds

¢ External lines

o h e =1, o« b =1,
b _ P o«
W~~~ —f,u(pa)‘)a o~~~ [ —EM(p,A),
e Propagators
o - ,g, _e = é , scalar propagator ,
q% — M2 + e
M q v 1 9190
o nANANe T T m (guz/ - (1= f)q2> ) photon propagator .

e Vertices
Regarding the vertices, the interaction Lagrangian is

Lo int = i€ (A1D,0" ¢ — A 0" 0 d) + > AFA,d% .

o1

(279)

(280)

(281)

(282)

(283)



The second term gives an interaction between two photons and two scalars. It is easy to get
that the last term of Eq. (283]) corresponds to the vertex

= 2ie*nh . (284)

The factor of 2 comes from the exchanging of the photon field. The first term of Eq. (283)
gives an interaction between two scalars and a photon. It reads

‘o i = de(p) —Ph). (285)

The momenta come from applying the derivative to the initial state scalars. Since we have

that
b(x) 5(p)) = e710), (286)
¢ (@) [5(p)) = =7 |0) . (287)
(s(p) 6" (@) = €7 (0] | (288)
()6 (@) = e (0] (289)

each derivative yields a factor of —ip#. In the case where the scalar is in the outgoing state,
the factor becomes ip* and so we have to invert the sign of the momentum.

¢) In this case we have massless fermions coupled by an interaction Lagrangian of the form
Lr= G@1’Y“¢2$2’mw1
= Gwl,c (’Y“)Cd 7/124177[}2,1) ('Y/L)ba V1,0

where in the last line we spelled out explicitly the Dirac indices. The external lines and the
propagators are the same as in point a), and are given by

(290)

e External lines

L e =uilp), o« 5 =uilp), (291)
J—Q = @f(p) ) .—27 = /Uf(p) ’ (292)
—ﬁ—o = u5(p) , Q—L = u5(p), (203)
J—o =05(p) , Q—E— = v3(p) (294)
e Propagators

q _ Zg , 11 propagator, (295)

o—>»— q2 + ie
q — i , 1)9 propagator, (296)

o> q% + ie

where black lines and red lines denote fermions of type 1 and type 2 respectively.
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e Vertices

Regarding the vertices, we can observe that the interaction Lagrangian in Eq.(290) is a 4-
fermion interaction, with two fermions of each type. The two possible vertices are

a c
= 1G (") g (V)pa > (297)
b d
and
a c
= 1G (") (V) g - (298)
b d
d) Left to the reader.
O
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